Lecture 4
Exploiting. Shellcodes

CNST
CTF crunch Computer and Network Security
October 21, 2019

Computer Science and Engineering Department

CSE Dep, ACS, UPB ecture 4, Exploiting. Shellcodes

FFFFFF

v

Bugs and Vulnerabilities

bugs: misbehaving sofware

vulnerability: misbehaviour that can benefit an attacker
exploiting: turning a vulnerability into an advantage for the
attacker

auditing: analyzing an application to determine its
vulnerabilities

CSE Dep, ACS, UPB

ecture 4, Exploiting. Shellcodes

CNSS

CTF crunch

Why Bugs and Vulnerabilities?

developer carelessness or ignorance
poor development process

poor design

platform (hardware, OS, libraries) issues

lack of resources

CSE Dep, ACS, UPB

Lecture 4, Exploiting. Shellcodes 4/36

CNSS Preventing Vulnerabilities

CTF crunch

v

development process: defensive programming, code review,
code audit

design with security in mind
audit systems, penetration testing

security-centered training

vvyyypy

invest resources

CSE Dep, ACS, UPB ecture 4, Exploiting. Shellcodes 5/36

CNSS

CTF crunch

Security Attacks

> eavesdropping, impersonating
> password breaking
> denial of service

> exploiting

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes

CNSS

CTF crunch

Exploiting

> exploiting vulnerabilities
> focus is controlling the system (root account)
P an intermediary step is gaining shell access to user

> privilege escalation

CSE Dep, ACS, UPB ecture 4, Exploiting. Shellcodes

CNSS

CTF crunch

vVvyvyVvVvyypy

Why Exploiting?

money
fame
challenge
fun

political, ideological

find security holes and fix them (ethical hacking)

CSE Dep, ACS, UPB

Lecture 4, Exploiting. Shellcodes

8/36

CNSS Detect/Prevent Exploiting

CTF crunch

monitoring
update software
stay connected
in-depth security
honeypots

vVvvyVvVvyy

state of mind: “it will happen”

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes

CNSS Types of Exploits

CTF crunch

> local exploit
> remote exploit
> user space exploit

> kernel space exploit

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 10/36

CNSS Runtime Application Exploiting

CTF crunch

v

find vulnerability in process runtime: memory, use of resources
alter normal execution pattern

aim for: getting a shell, getting access to resources,
information leak, crash application, denial of service

usually tamper with process memory and bad ways of memory
management

special focus on string management functions, input/output,
pointers

CSE Dep, ACS, UPB

CNSS Runtime Exploit Components

CTF crunch

P preparatory phase
> shellcode
b triggering phase

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes

13/36

CNS‘C‘J‘ Types of Runtime Application Vulnerabilities

CTF crunch

> buffer overflow (on stack or heap)
> integer overflow
> race conditions

> string formatting

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 14/36

CNSS Buffer Overflow

CTF crunch

> write beyond buffer limits

> stack-based overflow: overwrite variable, return address or
function pointer

> heap overflow: corrupt dynamically allocated memory

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 15/36

CNSS Shellcode

CTF crunch

> sequence of machine level instructions
> stored in memory at a convenient address

P executed when requested by jumping at the start address

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 17/36

CNST Shellcode Objectives

FFFFFFF

> typically the goal is to create a shell (if possible, with root
privilege)
> may be any useful binary code execution, such as starting a

client socket, or reading or writing a file, or sending a file over
the network

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 8/36

CNSS Shellcode Samples

CTF crunch

> http://www.shell-storm.org/shellcode/
> hexadecimal form for exec-ing a shell process
> also dubbed payload

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes

19/36

http://www.shell-storm.org/shellcode/

CNSS Shellcode Types

CTF crunch

> spawn shell using execve syscall

> use setresuid to restore root privileges (for setuid-enabled
programs)

> port-binding shellcode: create listener socket, accept
connections, duplicate file descriptors and spawn shell

P connect-back shellcode: create client socket and connect to
remote listener socket (accesible and controled by attacker),
duplicate file descriptors and spawn shell

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 20/36

CNSD

CTF crunch

Creating a Shellcode

may be done in C but it is recommended to do it in assembly

> allows shorter shellcodes
> complete control over the end result (binary machine code)

need to use syscalls for execve, setresuid, dup2 and others

need to place the /bin/sh string in memory (or other strings)
and pass it as argument to syscall

CSE Dep, ACS, UPB

21/36

CNSS

CTF crunch

>

»
>
>

setresuid(0, 0, 0) & exit(1)

byte

1

~N O O WwN

O~ W N -

Using Syscalls in Linux on x86

eax stores the syscall number

ebx, ecx, edx, esi, edi store syscall arguments

use int 0x80 to issue syscall

syscall numbers in /usr/include/asm/unistd_32.h

Fill eax, ebx, ecx and edx with zeros.

xor feax, jheax
xor %ebx, Y%ebx
xor %ecx, hecx
xor %edx, %edx
mov $164, %al
int $0x80

xor %eax, jheax
xor %ebx, Y%ebx
mov $1, %bl

mov $252, %al
int $0x80

Put 164 (setresuid syscall no) in eax.
Issue syscall: setresuid(0, 0, 0).

Fill eax with zeros.
Fill ebx with zeros.
Put 1 (EXIT_FAILURE) in ebx (only one

Put 252 (exit_group syscall no) in eax.
Issue syscall.

CSE Dep, ACS, UPB

Lecture 4, Exploiting. Shellcodes

22/36

CNSS Wrapper for Creating/Testing a Shellcode

CTF crunch

Assembly Wrapper

1 .globl main

2

3 main:

4 # Prepare registers an syscall arguments.
5 # int $0x80 # Do syscall.

Assembly Shellcode Sample

1 .globl main

2

3 main:

4 xor %eax, heax # Fill eax with zeros.

5 xor %ebx, %ebx # Fill ebx with zeros.

6 mov $1, %bl # Put 1 (EXIT_FAILURE) in ebx (only one
byte)

7 mov $252, %al # Put exit_group syscall no in eax.

8 int $0x80 # Issue syscall.

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 23/36

CNSS Building a Shellcode Wrapper

CTF crunch

Makefile

1 ASFLAGS = -march=i386 --32
CFLAGS = -Wall -m32
LDFLAGS = -m32

2

3

4

5 .PHONY: all clean
6

7 all: shellcode-wrapper-exit

8

9 shellcode-wrapper-exit: shellcode-wrapper-exit.o

11 shellcode-wrapper-exit.o: shellcode-wrapper-exit.s

13 clean:
14 -rm -f shellcode-wrapper-exit shellcode-wrapper-exit.o *~

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 24/36

CNSS Extracting Hex Data

CTF crunch

> actual shellcode is the machine code instruction
> use objdump on the object file and process the result

> use echo —en above to print in binary form

Using objdump to extract hex data

for i in $(objdump -d <module-name>.o | tr ’\t’ ’ ’ | tr ’ ’ ’\n’

| egrep >~ [0-9a-£]2$’) ; do echo -n "\x$i" ; done

> the reverse is achievable (getting the assembly mnemonics
from hex)

Using objdump to extract hex data

echo -en "hexadecimal data" > shellcode
objdump -b binary -m i386 -D shellcode

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 25/36

CNSE‘)‘ Shellcode Constraints

CTF crunch

due to input data filtering
small code

null-free
position-independent

alphanumeric (not always)

vVvYVvyVvVvyVvyy

more on the next lecture

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 26/36

QNSG: Null-free

FFFFFF

> required when dealing with null-terminated strings
» BAD: mov $1, %eax
> uses null bytes
> \xb8\x01\x00\x00\x00
> GOOD: xor %eax, %eax + inc %eax
> doesn't use null bytes
> \x31\xc0\x40
> BAD: mov $100, %eax
> uses null bytes
> \xb8\x64\x00\x00\x00
GOOD: xor %eax, %eax + mov $100, %al
> doesn't use null bytes
> \x31\xc0\xb0\x64

v

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes

FFFFFF

Using the Local Stack

place shellcode in local buffer on stack

rewrite return address to point to beginning of the buffer on
the stack

may need NOPs if exact address is not known

unable to be done if stack is non-executable

CSE Dep, ACS, UPB

Lecture 4, Exploiting. Shellcodes 29/36

CNS‘(}J Using an Environment Variable

CTF crunch

initialize an environment variable with the shellcode string
environment variable is placed on the stack of main
may be large enough to store large shellcodes

unable to be done if stack is non-executable

vVvyYyyvyy

more on the next lecture

CSE Dep, ACS, UPB Lecture 4, Exploitin 30/36

CNSS Using the Heap

CTF crunch

> place the shellcode on the heap
> requires a heap buffer overflow
> made difficult by ASLR and non-executable flags

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 31/36

CNSS Triggering Shellcodes

CTF crunch

> stack buffer overflow

> overwrite return address and point to address on stack or
environment variable
> overwrite local pointer and point to address on stack or
environment variable
> heap buffer overflow

> overwrites metadata pointers for heap allocated data

CSE Dep, ACS, UPB Lecture

CNSS Keywords

CTF crunch

> bugs > shellcode placing

> vulnerabilities > syscall

> exploit > null

> shellcode > stack buffer overflow
> shellcode construction > heap buffer overflow
> shellcode triggering > pwntools

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 34/36

FFFFFF

Useful Links

http://www.blackhatlibrary.net/Category:Shellcode
http://www.shell-storm.org/shellcode/
http://www.metasploit.com/
https://github.com/Gallopsled/pwntools
https://docs.pwntools.com/en/stable/

CSE Dep, ACS, UPB

Lecture 4, Exploiting. Shellcodes

35/36

http://www.blackhatlibrary.net/Category:Shellcode
http://www.shell-storm.org/shellcode/
http://www.metasploit.com/
https://github.com/Gallopsled/pwntools
https://docs.pwntools.com/en/stable/

References

» The Ethical Hacker's Handbook, 3rd Edition
> Chapter 13 & 14
> A Guide to Kernel Exploitation
> Chapter 1: From User-Land to Kernel-Land Attacks
> The Art of Exploitation, 2nd Edition
> Chapter 0x500. Shellcode
> Hacking Exposed. Malware and Rootkits
> Part Il: Rootkits

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes

	Vulnerabilities and Exploits
	Runtime Exploiting
	Shellcode
	Trigerring and Placing Shellcodes
	Conclusion

