Lecture 4
Exploiting. Shellcodes

CNST
CTF crunch Computer and Network Security
October 21, 2019

Computer Science and Engineering Department

CSE Dep, ACS, UPB ecture 4, Exploiting. Shellcodes



FFFFFF

v

Bugs and Vulnerabilities

bugs: misbehaving sofware

vulnerability: misbehaviour that can benefit an attacker
exploiting: turning a vulnerability into an advantage for the
attacker

auditing: analyzing an application to determine its
vulnerabilities
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Why Bugs and Vulnerabilities?

developer carelessness or ignorance
poor development process

poor design

platform (hardware, OS, libraries) issues

lack of resources
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CNSS Preventing Vulnerabilities
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development process: defensive programming, code review,
code audit

design with security in mind
audit systems, penetration testing

security-centered training
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invest resources
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Security Attacks

> eavesdropping, impersonating
> password breaking
> denial of service

> exploiting
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Exploiting

> exploiting vulnerabilities
> focus is controlling the system (root account)
P an intermediary step is gaining shell access to user

> privilege escalation
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Why Exploiting?

money
fame
challenge
fun

political, ideological

find security holes and fix them (ethical hacking)
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CNSS Detect/Prevent Exploiting
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monitoring
update software
stay connected
in-depth security
honeypots
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state of mind: “it will happen”

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes



CNSS Types of Exploits
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> local exploit
> remote exploit
> user space exploit

> kernel space exploit
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CNSS Runtime Application Exploiting
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find vulnerability in process runtime: memory, use of resources
alter normal execution pattern

aim for: getting a shell, getting access to resources,
information leak, crash application, denial of service

usually tamper with process memory and bad ways of memory
management

special focus on string management functions, input/output,
pointers
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CNSS Runtime Exploit Components
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P preparatory phase
> shellcode
b triggering phase
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> buffer overflow (on stack or heap)
> integer overflow
> race conditions

> string formatting
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CNSS Buffer Overflow
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> write beyond buffer limits

> stack-based overflow: overwrite variable, return address or
function pointer

> heap overflow: corrupt dynamically allocated memory
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CNSS Shellcode
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> sequence of machine level instructions
> stored in memory at a convenient address

P executed when requested by jumping at the start address
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> typically the goal is to create a shell (if possible, with root
privilege)
> may be any useful binary code execution, such as starting a

client socket, or reading or writing a file, or sending a file over
the network
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CNSS Shellcode Samples
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> http://www.shell-storm.org/shellcode/
> hexadecimal form for exec-ing a shell process
> also dubbed payload

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes

19/36


http://www.shell-storm.org/shellcode/

CNSS Shellcode Types
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> spawn shell using execve syscall

> use setresuid to restore root privileges (for setuid-enabled
programs)

> port-binding shellcode: create listener socket, accept
connections, duplicate file descriptors and spawn shell

P connect-back shellcode: create client socket and connect to
remote listener socket (accesible and controled by attacker),
duplicate file descriptors and spawn shell
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Creating a Shellcode

may be done in C but it is recommended to do it in assembly

> allows shorter shellcodes
> complete control over the end result (binary machine code)

need to use syscalls for execve, setresuid, dup2 and others

need to place the /bin/sh string in memory (or other strings)
and pass it as argument to syscall
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setresuid(0, 0, 0) & exit(1)

byte
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Using Syscalls in Linux on x86

eax stores the syscall number

ebx, ecx, edx, esi, edi store syscall arguments

use int 0x80 to issue syscall

syscall numbers in /usr/include/asm/unistd_32.h

# Fill eax, ebx, ecx and edx with zeros.

xor feax, jheax
xor %ebx, Y%ebx
xor %ecx, hecx
xor %edx, %edx
mov $164, %al
int $0x80

xor %eax, jheax
xor %ebx, Y%ebx
mov $1, %bl

mov $252, %al
int $0x80

# Put 164 (setresuid syscall no) in eax.
# Issue syscall: setresuid(0, 0, 0).

# Fill eax with zeros.
# Fill ebx with zeros.
# Put 1 (EXIT_FAILURE) in ebx (only one

# Put 252 (exit_group syscall no) in eax.
# Issue syscall.

CSE Dep, ACS, UPB

Lecture 4, Exploiting. Shellcodes

22/36



CNSS Wrapper for Creating/Testing a Shellcode
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Assembly Wrapper

1 .globl main

2

3 main:

4 # Prepare registers an syscall arguments.
5 # int $0x80 # Do syscall.

Assembly Shellcode Sample

1 .globl main

2

3 main:

4 xor %eax, heax # Fill eax with zeros.

5 xor %ebx, %ebx # Fill ebx with zeros.

6 mov $1, %bl # Put 1 (EXIT_FAILURE) in ebx (only one
byte)

7 mov $252, %al # Put exit_group syscall no in eax.

8 int $0x80 # Issue syscall.
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CNSS Building a Shellcode Wrapper
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Makefile

1 ASFLAGS = -march=i386 --32
CFLAGS = -Wall -m32
LDFLAGS = -m32

2

3

4

5 .PHONY: all clean
6

7 all: shellcode-wrapper-exit

8

9 shellcode-wrapper-exit: shellcode-wrapper-exit.o

11 shellcode-wrapper-exit.o: shellcode-wrapper-exit.s

13 clean:
14 -rm -f shellcode-wrapper-exit shellcode-wrapper-exit.o *~
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> actual shellcode is the machine code instruction
> use objdump on the object file and process the result

> use echo —en above to print in binary form

Using objdump to extract hex data

for i in $(objdump -d <module-name>.o | tr ’\t’ ’ ’ | tr ’ ’ ’\n’

| egrep >~ [0-9a-£]2$’) ; do echo -n "\x$i" ; done

> the reverse is achievable (getting the assembly mnemonics
from hex)

Using objdump to extract hex data

echo -en "hexadecimal data" > shellcode
objdump -b binary -m i386 -D shellcode
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due to input data filtering
small code

null-free
position-independent

alphanumeric (not always)
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more on the next lecture
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FFFFFF

> required when dealing with null-terminated strings
» BAD: mov $1, %eax
> uses null bytes
> \xb8\x01\x00\x00\x00
> GOOD: xor %eax, %eax + inc %eax
> doesn't use null bytes
> \x31\xc0\x40
> BAD: mov $100, %eax
> uses null bytes
> \xb8\x64\x00\x00\x00
GOOD: xor %eax, %eax + mov $100, %al
> doesn't use null bytes
> \x31\xc0\xb0\x64

v
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Using the Local Stack

place shellcode in local buffer on stack

rewrite return address to point to beginning of the buffer on
the stack

may need NOPs if exact address is not known

unable to be done if stack is non-executable
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initialize an environment variable with the shellcode string
environment variable is placed on the stack of main
may be large enough to store large shellcodes

unable to be done if stack is non-executable
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more on the next lecture
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CNSS Using the Heap
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> place the shellcode on the heap
> requires a heap buffer overflow
> made difficult by ASLR and non-executable flags
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CNSS Triggering Shellcodes
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> stack buffer overflow

> overwrite return address and point to address on stack or
environment variable
> overwrite local pointer and point to address on stack or
environment variable
> heap buffer overflow

> overwrites metadata pointers for heap allocated data
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> bugs > shellcode placing

> vulnerabilities > syscall

> exploit > null

> shellcode > stack buffer overflow
> shellcode construction > heap buffer overflow
> shellcode triggering > pwntools
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Useful Links

http://www.blackhatlibrary.net/Category:Shellcode
http://www.shell-storm.org/shellcode/
http://www.metasploit.com/
https://github.com/Gallopsled/pwntools
https://docs.pwntools.com/en/stable/
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