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Bugs and Vulnerabilities

I bugs: misbehaving sofware

I vulnerability: misbehaviour that can benefit an attacker

I exploiting: turning a vulnerability into an advantage for the
attacker

I auditing: analyzing an application to determine its
vulnerabilities
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Why Bugs and Vulnerabilities?

I developer carelessness or ignorance

I poor development process

I poor design

I platform (hardware, OS, libraries) issues

I lack of resources
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Preventing Vulnerabilities

I development process: defensive programming, code review,
code audit

I design with security in mind

I audit systems, penetration testing

I security-centered training

I invest resources
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Security Attacks

I eavesdropping, impersonating

I password breaking

I denial of service

I exploiting
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Exploiting

I exploiting vulnerabilities

I focus is controlling the system (root account)

I an intermediary step is gaining shell access to user

I privilege escalation

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 7/36

Why Exploiting?

I money

I fame

I challenge

I fun

I political, ideological

I find security holes and fix them (ethical hacking)
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Detect/Prevent Exploiting

I monitoring

I update software

I stay connected

I in-depth security

I honeypots

I state of mind: “it will happen”
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Types of Exploits

I local exploit

I remote exploit

I user space exploit

I kernel space exploit
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Runtime Application Exploiting

I find vulnerability in process runtime: memory, use of resources

I alter normal execution pattern

I aim for: getting a shell, getting access to resources,
information leak, crash application, denial of service

I usually tamper with process memory and bad ways of memory
management

I special focus on string management functions, input/output,
pointers
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Runtime Exploit Components

I preparatory phase

I shellcode

I triggering phase
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Types of Runtime Application Vulnerabilities

I buffer overflow (on stack or heap)

I integer overflow

I race conditions

I string formatting
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Buffer Overflow

I write beyond buffer limits

I stack-based overflow: overwrite variable, return address or
function pointer

I heap overflow: corrupt dynamically allocated memory
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Shellcode

I sequence of machine level instructions

I stored in memory at a convenient address

I executed when requested by jumping at the start address
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Shellcode Objectives

I typically the goal is to create a shell (if possible, with root
privilege)

I may be any useful binary code execution, such as starting a
client socket, or reading or writing a file, or sending a file over
the network
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Shellcode Samples

I http://www.shell-storm.org/shellcode/

I hexadecimal form for exec-ing a shell process

I also dubbed payload
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http://www.shell-storm.org/shellcode/


Shellcode Types

I spawn shell using execve syscall

I use setresuid to restore root privileges (for setuid-enabled
programs)

I port-binding shellcode: create listener socket, accept
connections, duplicate file descriptors and spawn shell

I connect-back shellcode: create client socket and connect to
remote listener socket (accesible and controled by attacker),
duplicate file descriptors and spawn shell
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Creating a Shellcode

I may be done in C but it is recommended to do it in assembly
I allows shorter shellcodes
I complete control over the end result (binary machine code)

I need to use syscalls for execve, setresuid, dup2 and others

I need to place the /bin/sh string in memory (or other strings)
and pass it as argument to syscall
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Using Syscalls in Linux on x86

I eax stores the syscall number
I ebx, ecx, edx, esi, edi store syscall arguments
I use int 0x80 to issue syscall
I syscall numbers in /usr/include/asm/unistd_32.h

setresuid(0, 0, 0) & exit(1)

1 # Fill eax, ebx, ecx and edx with zeros.

2 xor %eax, %eax

3 xor %ebx, %ebx

4 xor %ecx, %ecx

5 xor %edx, %edx

6 mov $164, %al # Put 164 (setresuid syscall no) in eax.

7 int $0x80 # Issue syscall: setresuid(0, 0, 0).

1 xor %eax, %eax # Fill eax with zeros.

2 xor %ebx, %ebx # Fill ebx with zeros.

3 mov $1, %bl # Put 1 (EXIT FAILURE) in ebx (only one

byte).

4 mov $252, %al # Put 252 (exit group syscall no) in eax.

5 int $0x80 # Issue syscall.
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Wrapper for Creating/Testing a Shellcode

Assembly Wrapper

1 .globl main

2

3 main:
4 # Prepare registers an syscall arguments.

5 # int $0x80 # Do syscall.

Assembly Shellcode Sample

1 .globl main

2

3 main:
4 xor %eax, %eax # Fill eax with zeros.

5 xor %ebx, %ebx # Fill ebx with zeros.

6 mov $1, %bl # Put 1 (EXIT FAILURE) in ebx (only one

byte).

7 mov $252, %al # Put exit group syscall no in eax.

8 int $0x80 # Issue syscall.
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Building a Shellcode Wrapper

Makefile

1 ASFLAGS = -march=i386 --32

2 CFLAGS = -Wall -m32

3 LDFLAGS = -m32

4

5 .PHONY: all clean
6

7 all: shellcode-wrapper-exit

8

9 shellcode-wrapper-exit: shellcode-wrapper-exit.o

10

11 shellcode-wrapper-exit.o: shellcode-wrapper-exit.s

12

13 clean:
14 -rm -f shellcode-wrapper-exit shellcode-wrapper-exit.o *∼
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Extracting Hex Data

I actual shellcode is the machine code instruction

I use objdump on the object file and process the result

I use echo -en above to print in binary form

Using objdump to extract hex data

for i in $(objdump -d <module-name>.o | tr ’\t’ ’ ’ | tr ’ ’ ’\n’

| egrep ’^[0-9a-f]2$’) ; do echo -n "\x$i" ; done

I the reverse is achievable (getting the assembly mnemonics
from hex)

Using objdump to extract hex data

echo -en "hexadecimal data" > shellcode

objdump -b binary -m i386 -D shellcode
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Shellcode Constraints

I due to input data filtering

I small code

I null-free

I position-independent

I alphanumeric (not always)

I more on the next lecture
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Null-free

I required when dealing with null-terminated strings
I BAD: mov $1, %eax

I uses null bytes
I \xb8\x01\x00\x00\x00

I GOOD: xor %eax, %eax + inc %eax
I doesn’t use null bytes
I \x31\xc0\x40

I BAD: mov $100, %eax
I uses null bytes
I \xb8\x64\x00\x00\x00

I GOOD: xor %eax, %eax + mov $100, %al
I doesn’t use null bytes
I \x31\xc0\xb0\x64
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Using the Local Stack

I place shellcode in local buffer on stack

I rewrite return address to point to beginning of the buffer on
the stack

I may need NOPs if exact address is not known

I unable to be done if stack is non-executable
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Using an Environment Variable

I initialize an environment variable with the shellcode string

I environment variable is placed on the stack of main

I may be large enough to store large shellcodes

I unable to be done if stack is non-executable

I more on the next lecture
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Using the Heap

I place the shellcode on the heap

I requires a heap buffer overflow

I made difficult by ASLR and non-executable flags
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Triggering Shellcodes

I stack buffer overflow
I overwrite return address and point to address on stack or

environment variable
I overwrite local pointer and point to address on stack or

environment variable

I heap buffer overflow
I overwrites metadata pointers for heap allocated data
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Useful Links

I http://www.blackhatlibrary.net/Category:Shellcode

I http://www.shell-storm.org/shellcode/

I http://www.metasploit.com/

I https://github.com/Gallopsled/pwntools

I https://docs.pwntools.com/en/stable/
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