
Lecture 4
Exploiting. Shellcodes

Computer and Network Security
October 21, 2019

Computer Science and Engineering Department

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 1/36

Bugs and Vulnerabilities

I bugs: misbehaving sofware

I vulnerability: misbehaviour that can benefit an attacker

I exploiting: turning a vulnerability into an advantage for the
attacker

I auditing: analyzing an application to determine its
vulnerabilities

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 3/36

Why Bugs and Vulnerabilities?

I developer carelessness or ignorance

I poor development process

I poor design

I platform (hardware, OS, libraries) issues

I lack of resources

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 4/36

Preventing Vulnerabilities

I development process: defensive programming, code review,
code audit

I design with security in mind

I audit systems, penetration testing

I security-centered training

I invest resources

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 5/36

Security Attacks

I eavesdropping, impersonating

I password breaking

I denial of service

I exploiting

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 6/36

Exploiting

I exploiting vulnerabilities

I focus is controlling the system (root account)

I an intermediary step is gaining shell access to user

I privilege escalation

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 7/36

Why Exploiting?

I money

I fame

I challenge

I fun

I political, ideological

I find security holes and fix them (ethical hacking)

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 8/36

Detect/Prevent Exploiting

I monitoring

I update software

I stay connected

I in-depth security

I honeypots

I state of mind: “it will happen”

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 9/36

Types of Exploits

I local exploit

I remote exploit

I user space exploit

I kernel space exploit

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 10/36

Runtime Application Exploiting

I find vulnerability in process runtime: memory, use of resources

I alter normal execution pattern

I aim for: getting a shell, getting access to resources,
information leak, crash application, denial of service

I usually tamper with process memory and bad ways of memory
management

I special focus on string management functions, input/output,
pointers

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 12/36

Runtime Exploit Components

I preparatory phase

I shellcode

I triggering phase

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 13/36

Types of Runtime Application Vulnerabilities

I buffer overflow (on stack or heap)

I integer overflow

I race conditions

I string formatting

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 14/36

Buffer Overflow

I write beyond buffer limits

I stack-based overflow: overwrite variable, return address or
function pointer

I heap overflow: corrupt dynamically allocated memory

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 15/36

Shellcode

I sequence of machine level instructions

I stored in memory at a convenient address

I executed when requested by jumping at the start address

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 17/36

Shellcode Objectives

I typically the goal is to create a shell (if possible, with root
privilege)

I may be any useful binary code execution, such as starting a
client socket, or reading or writing a file, or sending a file over
the network

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 18/36

Shellcode Samples

I http://www.shell-storm.org/shellcode/

I hexadecimal form for exec-ing a shell process

I also dubbed payload

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 19/36

http://www.shell-storm.org/shellcode/

Shellcode Types

I spawn shell using execve syscall

I use setresuid to restore root privileges (for setuid-enabled
programs)

I port-binding shellcode: create listener socket, accept
connections, duplicate file descriptors and spawn shell

I connect-back shellcode: create client socket and connect to
remote listener socket (accesible and controled by attacker),
duplicate file descriptors and spawn shell

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 20/36

Creating a Shellcode

I may be done in C but it is recommended to do it in assembly
I allows shorter shellcodes
I complete control over the end result (binary machine code)

I need to use syscalls for execve, setresuid, dup2 and others

I need to place the /bin/sh string in memory (or other strings)
and pass it as argument to syscall

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 21/36

Using Syscalls in Linux on x86

I eax stores the syscall number
I ebx, ecx, edx, esi, edi store syscall arguments
I use int 0x80 to issue syscall
I syscall numbers in /usr/include/asm/unistd_32.h

setresuid(0, 0, 0) & exit(1)

1 # Fill eax, ebx, ecx and edx with zeros.

2 xor %eax, %eax

3 xor %ebx, %ebx

4 xor %ecx, %ecx

5 xor %edx, %edx

6 mov $164, %al # Put 164 (setresuid syscall no) in eax.

7 int $0x80 # Issue syscall: setresuid(0, 0, 0).

1 xor %eax, %eax # Fill eax with zeros.

2 xor %ebx, %ebx # Fill ebx with zeros.

3 mov $1, %bl # Put 1 (EXIT FAILURE) in ebx (only one

byte).

4 mov $252, %al # Put 252 (exit group syscall no) in eax.

5 int $0x80 # Issue syscall.

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 22/36

Wrapper for Creating/Testing a Shellcode

Assembly Wrapper

1 .globl main

2

3 main:
4 # Prepare registers an syscall arguments.

5 # int $0x80 # Do syscall.

Assembly Shellcode Sample

1 .globl main

2

3 main:
4 xor %eax, %eax # Fill eax with zeros.

5 xor %ebx, %ebx # Fill ebx with zeros.

6 mov $1, %bl # Put 1 (EXIT FAILURE) in ebx (only one

byte).

7 mov $252, %al # Put exit group syscall no in eax.

8 int $0x80 # Issue syscall.

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 23/36

Building a Shellcode Wrapper

Makefile

1 ASFLAGS = -march=i386 --32

2 CFLAGS = -Wall -m32

3 LDFLAGS = -m32

4

5 .PHONY: all clean
6

7 all: shellcode-wrapper-exit

8

9 shellcode-wrapper-exit: shellcode-wrapper-exit.o

10

11 shellcode-wrapper-exit.o: shellcode-wrapper-exit.s

12

13 clean:
14 -rm -f shellcode-wrapper-exit shellcode-wrapper-exit.o *∼

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 24/36

Extracting Hex Data

I actual shellcode is the machine code instruction

I use objdump on the object file and process the result

I use echo -en above to print in binary form

Using objdump to extract hex data

for i in $(objdump -d <module-name>.o | tr ’\t’ ’ ’ | tr ’ ’ ’\n’

| egrep ’^[0-9a-f]2$’) ; do echo -n "\x$i" ; done

I the reverse is achievable (getting the assembly mnemonics
from hex)

Using objdump to extract hex data

echo -en "hexadecimal data" > shellcode

objdump -b binary -m i386 -D shellcode

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 25/36

Shellcode Constraints

I due to input data filtering

I small code

I null-free

I position-independent

I alphanumeric (not always)

I more on the next lecture

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 26/36

Null-free

I required when dealing with null-terminated strings
I BAD: mov $1, %eax

I uses null bytes
I \xb8\x01\x00\x00\x00

I GOOD: xor %eax, %eax + inc %eax
I doesn’t use null bytes
I \x31\xc0\x40

I BAD: mov $100, %eax
I uses null bytes
I \xb8\x64\x00\x00\x00

I GOOD: xor %eax, %eax + mov $100, %al
I doesn’t use null bytes
I \x31\xc0\xb0\x64

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 27/36

Using the Local Stack

I place shellcode in local buffer on stack

I rewrite return address to point to beginning of the buffer on
the stack

I may need NOPs if exact address is not known

I unable to be done if stack is non-executable

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 29/36

Using an Environment Variable

I initialize an environment variable with the shellcode string

I environment variable is placed on the stack of main

I may be large enough to store large shellcodes

I unable to be done if stack is non-executable

I more on the next lecture

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 30/36

Using the Heap

I place the shellcode on the heap

I requires a heap buffer overflow

I made difficult by ASLR and non-executable flags

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 31/36

Triggering Shellcodes

I stack buffer overflow
I overwrite return address and point to address on stack or

environment variable
I overwrite local pointer and point to address on stack or

environment variable

I heap buffer overflow
I overwrites metadata pointers for heap allocated data

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 32/36

Keywords

I bugs

I vulnerabilities

I exploit

I shellcode

I shellcode construction

I shellcode triggering

I shellcode placing

I syscall

I null

I stack buffer overflow

I heap buffer overflow

I pwntools

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 34/36

Useful Links

I http://www.blackhatlibrary.net/Category:Shellcode

I http://www.shell-storm.org/shellcode/

I http://www.metasploit.com/

I https://github.com/Gallopsled/pwntools

I https://docs.pwntools.com/en/stable/

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 35/36

References

I The Ethical Hacker’s Handbook, 3rd Edition
I Chapter 13 & 14

I A Guide to Kernel Exploitation
I Chapter 1: From User-Land to Kernel-Land Attacks

I The Art of Exploitation, 2nd Edition
I Chapter 0x500. Shellcode

I Hacking Exposed. Malware and Rootkits
I Part II: Rootkits

CSE Dep, ACS, UPB Lecture 4, Exploiting. Shellcodes 36/36

http://www.blackhatlibrary.net/Category:Shellcode
http://www.shell-storm.org/shellcode/
http://www.metasploit.com/
https://github.com/Gallopsled/pwntools
https://docs.pwntools.com/en/stable/

	Vulnerabilities and Exploits
	Runtime Exploiting
	Shellcode
	Trigerring and Placing Shellcodes
	Conclusion

