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Runtime/Dynamic Analysis

I inspect processes

I inspect resources: file, sockets, IPC (lsof, netstat, ss)

I inspect memory: pmap, GDB

I inspect calls: strace, ltrace

I thorough inspection: in debuggers (GDB, Immunity, OllyDbg)
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Runtime Application Security

I attack vulnerabilities in process address space and process flow
I attacker aims

I get a shell
I privilege escalation
I information leak
I denial of service

I defender: hardening process and runtime environment
(libraries, permissions, sandboxing, monitoring)
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Knowledge and Skills Required

I thread and process management

I (virtual) memory management

I intimate information on the process address space

I working with arrays and strings

I hex/binary

I assembly, dissasembling

I platform ISA

I good skills working with a debugger
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Process Address Space

I memory address space of a process

I linear

I memory areas, responsibilities

I static/dynamic allocation

I memory mapping

I access rights
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Text

I stores code

I read only and executable

I instruction pointer/program counter points to current
instruction

I libraries posses code segment

I instruction pointer may jump to library code
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Data

I stores data (global variables)

I .data, .bss, .rodata

I read-write, .rodata is read-only

I accessed through normal registers (eax, ebx, ecx, edx)
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Heap

I dyanamic memory allocation

I malloc and friends

I linked list implementation in the backend

I pointer madness

I memory leaks

I read-write
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Stack

I store function call frames

I function arguments and local variables

I stack pointer, frame pointer

I read-write
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Generic Stack Operations

I push: push new element on stack

I pop: pop element on stack, return null if no element on
stack

I top/peek: show last element on stack

I can only push to top and pop from top of the stack
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The Stack in the Process Address Space

I it’s bottom up in x86 architecture

I base address points to bottom of the stack

I stack pointer points to top of the stack

I stack pointer <= base address

I stack size = base address - stack pointer
I stack “grows down”

I when stack grows, stack pointer decreases in value
I when stack decreases, stack pointer increases in value
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Push/Pop

I push operation adds data to stack: stack grows, stack pointer
decreases

I push is equivalent to
I sub $4, %esp
I mov value, (%esp)

I pop operation removes data from stack: stack decreases,
stack pointer increases

I push is equivalent to
I mov (%esp), value
I add $4, %esp
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Stack Frame

http://ocw.cs.pub.ro/courses/so/laboratoare/laborator-04
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Stack Frame (2)

I caller and callee

I stores current function call context

I stores return address

I identified by frame pointer

I What does the -fomit-frame-pointer option do?

I call stack

I stack (back)trace
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Call Stack

http://en.wikipedia.org/wiki/Stack_(abstract_data_type)#Hardware_stacks
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Calling a Function

I push function arguments, stack pointer decreases, the stack
grows

I issue call new-function-address
I save/push instruction pointer on stack (stack grows, stack

pointer decreases
I jump to new-function-address

I save/push old frame pointer

I save current stack pointer in frame pointer register

I save registers

I make room on stack (stack grows, stack pointer decreases)
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http://ocw.cs.pub.ro/courses/so/laboratoare/laborator-04
http://en.wikipedia.org/wiki/Stack_(abstract_data_type)#Hardware_stacks


Returning from a Function

I discard stack (stack decreases, stack pointer increases)

I restore/pop registers

I restore/pop old frame pointer
I issue ret

I restore instruction pointer from top of the stack (stack
decreases, stack pointer increases)

I continue execution from previous point

I restore frame pointer

I discard stack in caller frame
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What is a Buffer?

I an array of bytes for storing temporary data

I generally dynamic (its contents change during runtime)

I frequent access: read-write

I base address, data type, number of elements

I buffer size = number of elements * sizeof(data type)
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Why Buffers?

I store data during runtime

I pass data between functions (arguments or return values)
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On Memory Allocation

I static allocation: at compile time (in data or bss)

I dynamic allocation: at runtime (malloc, on heap)

I automatic allocation: on the stack, during runtime, usually
fixed size

I in case of dynamic allocation, the pointer variable is stored on
the stack and the actual buffer data is stored on the heap

I allocation granularity is the page at OS/hardware-level
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Arrays vs. Pointers

I int buffer[10]; – array

I int *buffer; – pointer

I array occupies sizeof(buffer)

I pointer occupies sizeof(int *) + size of buffer

I an array is like a label

I a pointer is a variable
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Problems with Buffers

I you have to know their length
I buffer overflow

I you have to be careful about the index
I index out of bounds
I buffer overflow
I negative index
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Buffer Overflow

I write data continuously in buffer (strcpy-like)

I pass buffer boundary and overwrite data

I may be exploited by writing function pointers, return address
or function pointers

I allocations is page level, so overflow won’t trigger exceptions

I may be stack-based or heap-based
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What if?

I not enough arguments for a function call

I too many arguments for a function call

I overflow of local buffers
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The Return Address

I stored on the stack to allow jump back

I may be overwritten and allow random jumps (the stack is
read write)
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Stack Overflow

I the stack overflows, goes into another memory zone

I may be the heap

I may be another stack in case of a multithreaded program
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Stack Buffer Overflow

I overflow buffer on stack and rewrite something

I rewriting may be a local variable (number, function pointer)
or return address of current stack frame

I if rewriting a function pointer jump to a conveniant address:
address of buffer on stack, address of environment variable,
address of function in libc
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Rewrite the Return Address with Address on Stack

I the usual way to exploit a stack buffer overflow (needs
non-executable stack)

I do a stack buffer overflow and overwrite the return address
(ebp+4)

I ovewrite with start address of buffer on the stack

I when function returns, jump to start address of buffer

I carefully place instructions to execute desired code at the
beginning of the buffer (also dubbed shellcode)
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NOP Sled

I buffer may be placed at non-exact address

I one solution is guessing the address

I the other is placing a sufficient number of NOP operations
and jump to an address in the middle of the NOPs

I the program executes a set of NOPs and then reaches the
actual shellcode
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Shellcode

I a sequence of instructions allowing the execution of an
instruction similar to system("/bin/sh");

I usually provides a shell out of an average program

I may do some other actions (reading files, writing to files)

I the shell is a first step of an exploitation

I followed by an attempt to gain root access

I more on “Lecture 03: Exploiting”
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Return-to-libc Attack

I jump to a function call in the C library (such as system or
exec)

I may be used in heap or data segments

I useful when stack is non-executable
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Demo

I the stack in shellcodes

I level 5 from io.smashthestack.org
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Useful Links

I Aleph One – Smashing the Stack for Fun and Profit:
http://insecure.org/stf/smashstack.html

I http://www.cs.umd.edu/class/sum2003/cmsc311/

Notes/Mips/stack.html

I http:

//www.cs.vu.nl/~herbertb/misc/bufferoverflow/

I http://www.win.tue.nl/~aeb/linux/hh/hh-10.html
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