
Lecture 2
Program Analysis

Computer and Network Security
October 7, 2019

Computer Science and Engineering Department

CSE Dep, ACS, UPB Lecture 2, Program Analysis 1/79

Lecture 2
Program Analysis

Computer and Network Security
October 7, 2019

Computer Science and Engineering Department

2
0
1
9
-1
0
-0
9

Lecture 2

Program Analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 2/79

Program Analysis

2
0
1
9
-1
0
-0
9

Lecture 2

Program Analysis

I automatic analysis of programs

I property verification

I optimization (performance) or correctness

I static analysis or dynamic analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 3/79

Program Analysis

I automatic analysis of programs

I property verification

I optimization (performance) or correctness

I static analysis or dynamic analysis

2
0
1
9
-1
0
-0
9

Lecture 2

Program Analysis

Program Model

I automaton

I control flow graph (CFG) (set of states and transitions)

I coverage: how much of the CFG can the analysis cover to
ensure property validation

CSE Dep, ACS, UPB Lecture 2, Program Analysis 4/79

Program Model

I automaton

I control flow graph (CFG) (set of states and transitions)

I coverage: how much of the CFG can the analysis cover to
ensure property validation

2
0
1
9
-1
0
-0
9

Lecture 2

Program Model

Static and Dynamic Analysis

I do not execute or execute the program

I static analysis on source code or on binary program
(executable)

I dynamic analysis on resource usage and behavior (process)

I symbolic execution is static analysis

I fuzzing is dynamic analysis

I static analysis: broad, may go into path explosion

I dynamic analysis: depth, may miss certain cases

CSE Dep, ACS, UPB Lecture 2, Program Analysis 5/79

Static and Dynamic Analysis

I do not execute or execute the program

I static analysis on source code or on binary program
(executable)

I dynamic analysis on resource usage and behavior (process)

I symbolic execution is static analysis

I fuzzing is dynamic analysis

I static analysis: broad, may go into path explosion

I dynamic analysis: depth, may miss certain cases

2
0
1
9
-1
0
-0
9

Lecture 2

Static and Dynamic Analysis

Source Code vs Executable

I extensive analysis on source code but . . .

I we don’t know what the compiler / linker does to it, what
optimizations happen, how it links to other components

I it may not be available

I we focus most on static binary analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 6/79

Source Code vs Executable

I extensive analysis on source code but . . .

I we don’t know what the compiler / linker does to it, what
optimizations happen, how it links to other components

I it may not be available

I we focus most on static binary analysis

2
0
1
9
-1
0
-0
9

Lecture 2

Source Code vs Executable

Source Code vs Executable

I extensive analysis on source code but . . .

I we don’t know what the compiler / linker does to it, what
optimizations happen, how it links to other components

I it may not be available

I we focus most on static binary analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 6/79

Source Code vs Executable

I extensive analysis on source code but . . .

I we don’t know what the compiler / linker does to it, what
optimizations happen, how it links to other components

I it may not be available

I we focus most on static binary analysis

2
0
1
9
-1
0
-0
9

Lecture 2

Source Code vs Executable

Source Code vs Executable

I extensive analysis on source code but . . .

I we don’t know what the compiler / linker does to it, what
optimizations happen, how it links to other components

I it may not be available

I we focus most on static binary analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 6/79

Source Code vs Executable

I extensive analysis on source code but . . .

I we don’t know what the compiler / linker does to it, what
optimizations happen, how it links to other components

I it may not be available

I we focus most on static binary analysis

2
0
1
9
-1
0
-0
9

Lecture 2

Source Code vs Executable

Source Code vs Executable

I extensive analysis on source code but . . .

I we don’t know what the compiler / linker does to it, what
optimizations happen, how it links to other components

I it may not be available

I we focus most on static binary analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 6/79

Source Code vs Executable

I extensive analysis on source code but . . .

I we don’t know what the compiler / linker does to it, what
optimizations happen, how it links to other components

I it may not be available

I we focus most on static binary analysis

2
0
1
9
-1
0
-0
9

Lecture 2

Source Code vs Executable

Source Code vs Executable

I extensive analysis on source code but . . .

I we don’t know what the compiler / linker does to it, what
optimizations happen, how it links to other components

I it may not be available

I we focus most on static binary analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 6/79

Source Code vs Executable

I extensive analysis on source code but . . .

I we don’t know what the compiler / linker does to it, what
optimizations happen, how it links to other components

I it may not be available

I we focus most on static binary analysis

2
0
1
9
-1
0
-0
9

Lecture 2

Source Code vs Executable

Challenges of Static Binary Analysis

I more difficult to understand: requires reverse engineering

I may be subject to obfuscation, encryption, packing

I typically doubled by dynamic analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 7/79

Challenges of Static Binary Analysis

I more difficult to understand: requires reverse engineering

I may be subject to obfuscation, encryption, packing

I typically doubled by dynamic analysis

2
0
1
9
-1
0
-0
9

Lecture 2

Challenges of Static Binary Analysis

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

CSE Dep, ACS, UPB Lecture 2, Program Analysis 8/79

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

2
0
1
9
-1
0
-0
9

Lecture 2
From Source Code to Process

Outline

Process as a Goal

I provide functionality

I dynamic / run time

I allocate and use memory and other resources

CSE Dep, ACS, UPB Lecture 2, Program Analysis 9/79

Process as a Goal

I provide functionality

I dynamic / run time

I allocate and use memory and other resources

2
0
1
9
-1
0
-0
9

Lecture 2
From Source Code to Process

Process as a Goal

Steps from Source Code to Process

1. compile and assemble source code into object files

2. link object files into executable

3. load executable (disk image file) into process (memory +
CPU)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 10/79

Steps from Source Code to Process

1. compile and assemble source code into object files

2. link object files into executable

3. load executable (disk image file) into process (memory +
CPU)

2
0
1
9
-1
0
-0
9

Lecture 2
From Source Code to Process

Steps from Source Code to Process

Object File

I binary files

I headers and binary code

I may be disassembled

I data and code

I sections

CSE Dep, ACS, UPB Lecture 2, Program Analysis 11/79

Object File

I binary files

I headers and binary code

I may be disassembled

I data and code

I sections

2
0
1
9
-1
0
-0
9

Lecture 2
From Source Code to Process

Object File

Library Files

I archive/collection of object files

I modularity
I static-linking and dynamic linking libraries

I linking happens at link time
I linking happens at load time

CSE Dep, ACS, UPB Lecture 2, Program Analysis 12/79

Library Files

I archive/collection of object files

I modularity
I static-linking and dynamic linking libraries

I linking happens at link time
I linking happens at load time

2
0
1
9
-1
0
-0
9

Lecture 2
From Source Code to Process

Library Files

Executable Files

I binary files

I similar to object files, consist of object code

I may be disassembled

I created from object files
I static and dynamic executables

I static: all object code is part of the executable
I dynamic: library stubs to library functions

CSE Dep, ACS, UPB Lecture 2, Program Analysis 13/79

Executable Files

I binary files

I similar to object files, consist of object code

I may be disassembled

I created from object files
I static and dynamic executables

I static: all object code is part of the executable
I dynamic: library stubs to library functions

2
0
1
9
-1
0
-0
9

Lecture 2
From Source Code to Process

Executable Files

ELF

http://www.roman10.net/2012/11/28/an-intro-to-elf-file-formatpart-1-file-types-and-dual-views/

CSE Dep, ACS, UPB Lecture 2, Program Analysis 14/79

ELF

http://www.roman10.net/2012/11/28/an-intro-to-elf-file-formatpart-1-file-types-and-dual-views/2
0
1
9
-1
0
-0
9

Lecture 2
From Source Code to Process

ELF

http://www.roman10.net/2012/11/28/an-intro-to-elf-file-formatpart-1-file-types-and-dual-views/
http://www.roman10.net/2012/11/28/an-intro-to-elf-file-formatpart-1-file-types-and-dual-views/

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

CSE Dep, ACS, UPB Lecture 2, Program Analysis 15/79

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

2
0
1
9
-1
0
-0
9

Lecture 2
The ELF Format

Outline

Object File Format

I format of a file that contains object code: object file,
executable files, dynamic-linking library files

I headers, sections

I data and code

I may be disassembled

I PE (Portable Executable) on Windows

I COFF (Common Object File Format) on Unix

I ELF (Executable and Linking Format) on Linux

CSE Dep, ACS, UPB Lecture 2, Program Analysis 16/79

Object File Format

I format of a file that contains object code: object file,
executable files, dynamic-linking library files

I headers, sections

I data and code

I may be disassembled

I PE (Portable Executable) on Windows

I COFF (Common Object File Format) on Unix

I ELF (Executable and Linking Format) on Linux

2
0
1
9
-1
0
-0
9

Lecture 2
The ELF Format

Object File Format

Common Information in Executabile Files

I entry point

I program addresses (section addresses)

I section sizes

I symbols (names and addresses)

I permissions

CSE Dep, ACS, UPB Lecture 2, Program Analysis 17/79

Common Information in Executabile Files

I entry point

I program addresses (section addresses)

I section sizes

I symbols (names and addresses)

I permissions

2
0
1
9
-1
0
-0
9

Lecture 2
The ELF Format

Common Information in Executabile Files

ELF Format

I header

I program headers

I sections

I segments

I symbols

I readelf, objdump, nm

CSE Dep, ACS, UPB Lecture 2, Program Analysis 18/79

ELF Format

I header

I program headers

I sections

I segments

I symbols

I readelf, objdump, nm

2
0
1
9
-1
0
-0
9

Lecture 2
The ELF Format

ELF Format

Sections

I storing data or code

I readelf -S program

I .text, .data, .bss

I .symtab, .strtab

CSE Dep, ACS, UPB Lecture 2, Program Analysis 19/79

Sections

I storing data or code

I readelf -S program

I .text, .data, .bss

I .symtab, .strtab

2
0
1
9
-1
0
-0
9

Lecture 2
The ELF Format

Sections

Sections vs. Segments

I segments contain 0 ore more sections

I sections are used by linker, some sections may be ditched at
runtime

I segments are used by the operating system (loaded into
memory)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 20/79

Sections vs. Segments

I segments contain 0 ore more sections

I sections are used by linker, some sections may be ditched at
runtime

I segments are used by the operating system (loaded into
memory)

2
0
1
9
-1
0
-0
9

Lecture 2
The ELF Format

Sections vs. Segments

View of ELF File

http://www.roman10.net/2012/11/28/an-intro-to-elf-file-formatpart-1-file-types-and-dual-views/

CSE Dep, ACS, UPB Lecture 2, Program Analysis 21/79

View of ELF File

http://www.roman10.net/2012/11/28/an-intro-to-elf-file-formatpart-1-file-types-and-dual-views/2
0
1
9
-1
0
-0
9

Lecture 2
The ELF Format

View of ELF File

http://www.roman10.net/2012/11/28/an-intro-to-elf-file-formatpart-1-file-types-and-dual-views/
http://www.roman10.net/2012/11/28/an-intro-to-elf-file-formatpart-1-file-types-and-dual-views/

Symbols

I readelf -s program

I .dynsym and .symtab

I name, value, type, bind, size

CSE Dep, ACS, UPB Lecture 2, Program Analysis 22/79

Symbols

I readelf -s program

I .dynsym and .symtab

I name, value, type, bind, size

2
0
1
9
-1
0
-0
9

Lecture 2
The ELF Format

Symbols

Debugging Symbols

I Map Assembly instructions to variable, function or line in the
source code

I Help mapping stack values with function parameters

I Optimize data flow analysis

I Optimize static and dynamic analysis

I On Linux, symbol table is embedded in the ELF file. PE files
use an external symbols file

CSE Dep, ACS, UPB Lecture 2, Program Analysis 23/79

Debugging Symbols

I Map Assembly instructions to variable, function or line in the
source code

I Help mapping stack values with function parameters

I Optimize data flow analysis

I Optimize static and dynamic analysis

I On Linux, symbol table is embedded in the ELF file. PE files
use an external symbols file

2
0
1
9
-1
0
-0
9

Lecture 2
The ELF Format

Debugging Symbols

Stripping

I Removing symbol table from program executable

I Complicates reverse engineering

I Less space used by original binary

CSE Dep, ACS, UPB Lecture 2, Program Analysis 24/79

Stripping

I Removing symbol table from program executable

I Complicates reverse engineering

I Less space used by original binary

2
0
1
9
-1
0
-0
9

Lecture 2
The ELF Format

Stripping

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

CSE Dep, ACS, UPB Lecture 2, Program Analysis 25/79

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

2
0
1
9
-1
0
-0
9

Lecture 2
Linking

Outline

Overview of Linking

I All object files are linked together to produce an executable file

I Input: Object files, static libraries, dynamic libraries

I Output: Executable image

I The linker resolved external references from each object file

CSE Dep, ACS, UPB Lecture 2, Program Analysis 26/79

Overview of Linking

I All object files are linked together to produce an executable file

I Input: Object files, static libraries, dynamic libraries

I Output: Executable image

I The linker resolved external references from each object file

2
0
1
9
-1
0
-0
9

Lecture 2
Linking

Overview of Linking

Using ld

I Command used in the last compiling phase

I Libraries are specified using -l option

I PIE option enables ASLR support

CSE Dep, ACS, UPB Lecture 2, Program Analysis 27/79

Using ld

I Command used in the last compiling phase

I Libraries are specified using -l option

I PIE option enables ASLR support

2
0
1
9
-1
0
-0
9

Lecture 2
Linking

Using ld

Static Linking

I Linker copies library routines directly into executables image

I Executable is more portable because all data needed to
execute resides in the file

I Faster execution because imports are not resolved at runtime

I Uses more space

CSE Dep, ACS, UPB Lecture 2, Program Analysis 28/79

Static Linking

I Linker copies library routines directly into executables image

I Executable is more portable because all data needed to
execute resides in the file

I Faster execution because imports are not resolved at runtime

I Uses more space

2
0
1
9
-1
0
-0
9

Lecture 2
Linking

Static Linking

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

CSE Dep, ACS, UPB Lecture 2, Program Analysis 29/79

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

2
0
1
9
-1
0
-0
9

Lecture 2
Tools of the Trade for Binary Static Analysis

Outline

Tools of Trade

I building machine code files

I inspecting machine code files

I disassembling machine code files

CSE Dep, ACS, UPB Lecture 2, Program Analysis 30/79

Tools of Trade

I building machine code files

I inspecting machine code files

I disassembling machine code files

2
0
1
9
-1
0
-0
9

Lecture 2
Tools of the Trade for Binary Static Analysis

Tools of Trade

Building Executables

I gcc, gas, nasm, ar, ld

CSE Dep, ACS, UPB Lecture 2, Program Analysis 31/79

Building Executables

I gcc, gas, nasm, ar, ld

2
0
1
9
-1
0
-0
9

Lecture 2
Tools of the Trade for Binary Static Analysis

Building Executables

ELF Inspection

I strings

I xxd

I readelf

I nm

CSE Dep, ACS, UPB Lecture 2, Program Analysis 32/79

ELF Inspection

I strings

I xxd

I readelf

I nm

2
0
1
9
-1
0
-0
9

Lecture 2
Tools of the Trade for Binary Static Analysis

ELF Inspection

Disassembling

I IDA

I objdump

I radare2

CSE Dep, ACS, UPB Lecture 2, Program Analysis 33/79

Disassembling

I IDA

I objdump

I radare2

2
0
1
9
-1
0
-0
9

Lecture 2
Tools of the Trade for Binary Static Analysis

Disassembling

Not for Static Analysis

I pmap

I lsof

I ltrace

I strace

I GDB

CSE Dep, ACS, UPB Lecture 2, Program Analysis 34/79

Not for Static Analysis

I pmap

I lsof

I ltrace

I strace

I GDB

2
0
1
9
-1
0
-0
9

Lecture 2
Tools of the Trade for Binary Static Analysis

Not for Static Analysis

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

CSE Dep, ACS, UPB Lecture 2, Program Analysis 35/79

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Analysis

Outline

Dynamic Analysis

I starts from executable files

I investigate processes

I requires process to run

I runtime analysis

I blackbox analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 36/79

Dynamic Analysis

I starts from executable files

I investigate processes

I requires process to run

I runtime analysis

I blackbox analysis

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Analysis

Dynamic Analysis

Processes

I unit of work in the operating system

I virtual memory address space, threads, resources

I isolated from each other

I at load time the executable gives birth to a process

CSE Dep, ACS, UPB Lecture 2, Program Analysis 37/79

Processes

I unit of work in the operating system

I virtual memory address space, threads, resources

I isolated from each other

I at load time the executable gives birth to a process

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Analysis

Processes

Process Memory Layout

http://www.tenouk.com/Bufferoverflowc/Bufferoverflow1_files/image022.png

CSE Dep, ACS, UPB Lecture 2, Program Analysis 38/79

Process Memory Layout

http://www.tenouk.com/Bufferoverflowc/Bufferoverflow1_files/image022.png

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Analysis

Process Memory Layout

http://www.tenouk.com/Bufferoverflowc/Bufferoverflow1_files/image022.png
http://www.tenouk.com/Bufferoverflowc/Bufferoverflow1_files/image022.png

Interesting Process Information

I the process memory map (virtual memory areas)

I memory addresses: code, variables

I memory region access rights

I machine code (to be disassembled)

I process state: registers, (call) stack, code

CSE Dep, ACS, UPB Lecture 2, Program Analysis 39/79

Interesting Process Information

I the process memory map (virtual memory areas)

I memory addresses: code, variables

I memory region access rights

I machine code (to be disassembled)

I process state: registers, (call) stack, code

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Analysis

Interesting Process Information

Why Dynamic Analysis

I get output for input (blackbox)

I glimpse into the internals

I monitor/inspect resource usage

I debug execution and test attacks (step by step)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 40/79

Why Dynamic Analysis

I get output for input (blackbox)

I glimpse into the internals

I monitor/inspect resource usage

I debug execution and test attacks (step by step)

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Analysis

Why Dynamic Analysis

What Do We Investigate?

I code: system calls, library calls, function calls, step-by-step
code

I state: thread information, process maps, open files, resources

I data: registers, variables, raw memory data

CSE Dep, ACS, UPB Lecture 2, Program Analysis 41/79

What Do We Investigate?

I code: system calls, library calls, function calls, step-by-step
code

I state: thread information, process maps, open files, resources

I data: registers, variables, raw memory data

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Analysis

What Do We Investigate?

Inspecting Code

I function call tracing

I disassembling

I step by step instructions

I look into code where required in the process virtual address
space

CSE Dep, ACS, UPB Lecture 2, Program Analysis 42/79

Inspecting Code

I function call tracing

I disassembling

I step by step instructions

I look into code where required in the process virtual address
space

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Analysis

Inspecting Code

Inspecting Data

I variables: global (data) and local (stack)

I runtime metadata: return addresses, function arguments,
command line arguments, GOT and PLT (to be discussed
later)

I registers

I raw memory data: heap, stack, random address

CSE Dep, ACS, UPB Lecture 2, Program Analysis 43/79

Inspecting Data

I variables: global (data) and local (stack)

I runtime metadata: return addresses, function arguments,
command line arguments, GOT and PLT (to be discussed
later)

I registers

I raw memory data: heap, stack, random address

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Analysis

Inspecting Data

Inspecting State

I process memory map

I thread state

I open file descriptors

CSE Dep, ACS, UPB Lecture 2, Program Analysis 44/79

Inspecting State

I process memory map

I thread state

I open file descriptors

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Analysis

Inspecting State

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

CSE Dep, ACS, UPB Lecture 2, Program Analysis 45/79

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

2
0
1
9
-1
0
-0
9

Lecture 2
Tools for Dynamic Analysis

Outline

Types of Tools

I blackbox inspection: function call tracers (strace, ltrace,
dtrace/dtruss), fuzzers

I profilers: most often for performance: perf, callgrind, vTune

I debugging: GDB, LLDB, valgrind

CSE Dep, ACS, UPB Lecture 2, Program Analysis 46/79

Types of Tools

I blackbox inspection: function call tracers (strace, ltrace,
dtrace/dtruss), fuzzers

I profilers: most often for performance: perf, callgrind, vTune

I debugging: GDB, LLDB, valgrind

2
0
1
9
-1
0
-0
9

Lecture 2
Tools for Dynamic Analysis

Types of Tools

Fuzzing

I generate “random” input and detect program flaws

I program is run

I smart fuzzer try to direct

I AFL, libfuzzer

CSE Dep, ACS, UPB Lecture 2, Program Analysis 47/79

Fuzzing

I generate “random” input and detect program flaws

I program is run

I smart fuzzer try to direct

I AFL, libfuzzer

2
0
1
9
-1
0
-0
9

Lecture 2
Tools for Dynamic Analysis

Fuzzing

strace/ltrace

I strace ./a.out

I strace -e read,write ./a.out

I strace -e file ./a.out

I strace -e file -f ./a.out

I strace -e file -s 512 -f ./a.out

I similar options for ltrace

CSE Dep, ACS, UPB Lecture 2, Program Analysis 48/79

strace/ltrace

I strace ./a.out

I strace -e read,write ./a.out

I strace -e file ./a.out

I strace -e file -f ./a.out

I strace -e file -s 512 -f ./a.out

I similar options for ltrace

2
0
1
9
-1
0
-0
9

Lecture 2
Tools for Dynamic Analysis

strace/ltrace

lsof/pmap

I PID as argument

I lsof -p 12345

I pmap 12345

CSE Dep, ACS, UPB Lecture 2, Program Analysis 49/79

lsof/pmap

I PID as argument

I lsof -p 12345

I pmap 12345

2
0
1
9
-1
0
-0
9

Lecture 2
Tools for Dynamic Analysis

lsof/pmap

perf

I default profiler on Linux

I sampling profiler, doesn’t instrument the code

I uses events sampling

I perf stat -e cache-misses -a ./mem-walk

I sudo perf list

I some actions and events may require privileged access

CSE Dep, ACS, UPB Lecture 2, Program Analysis 50/79

perf

I default profiler on Linux

I sampling profiler, doesn’t instrument the code

I uses events sampling

I perf stat -e cache-misses -a ./mem-walk

I sudo perf list

I some actions and events may require privileged access

2
0
1
9
-1
0
-0
9

Lecture 2
Tools for Dynamic Analysis

perf

GDB

I default debugger on GNU/Linux distributions

I command line; there are some GUI front-ends

I incorporated in Linux-based IDEs

I debugging, dynamic analysis / process investigation

I gdb ./a.out

I gdb -q ./a.out

CSE Dep, ACS, UPB Lecture 2, Program Analysis 51/79

GDB

I default debugger on GNU/Linux distributions

I command line; there are some GUI front-ends

I incorporated in Linux-based IDEs

I debugging, dynamic analysis / process investigation

I gdb ./a.out

I gdb -q ./a.out

2
0
1
9
-1
0
-0
9

Lecture 2
Tools for Dynamic Analysis

GDB

LLDB

I LLVM Debugger

I used on Mac OS X

I similar features to GDB

I command line; most commands are equivalent to GDB

I http://lldb.llvm.org/lldb-gdb.html

CSE Dep, ACS, UPB Lecture 2, Program Analysis 52/79

LLDB

I LLVM Debugger

I used on Mac OS X

I similar features to GDB

I command line; most commands are equivalent to GDB

I http://lldb.llvm.org/lldb-gdb.html

2
0
1
9
-1
0
-0
9

Lecture 2
Tools for Dynamic Analysis

LLDB

http://lldb.llvm.org/lldb-gdb.html
http://lldb.llvm.org/lldb-gdb.html

Hardware Support for Debugging

I useful for debugging embedded devices
I JTAG: Joint Test Action Group

I uses dedicated debug port

I Lauterbach Trace32: in circuit debugger (device using JTAG)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 53/79

Hardware Support for Debugging

I useful for debugging embedded devices
I JTAG: Joint Test Action Group

I uses dedicated debug port

I Lauterbach Trace32: in circuit debugger (device using JTAG)

2
0
1
9
-1
0
-0
9

Lecture 2
Tools for Dynamic Analysis

Hardware Support for Debugging

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

CSE Dep, ACS, UPB Lecture 2, Program Analysis 54/79

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

2
0
1
9
-1
0
-0
9

Lecture 2
GDB

Outline

GDB and Security

I not just for debugging

I follow what a process does (step instructions)

I inspect data (memory, registers)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 55/79

GDB and Security

I not just for debugging

I follow what a process does (step instructions)

I inspect data (memory, registers)

2
0
1
9
-1
0
-0
9

Lecture 2
GDB

GDB and Security

GDB for Dynamic Analysis

I process state inspection

I register inspection

I (machine) code inspection

I memory inspection

I memory alteration

I function call tracing

CSE Dep, ACS, UPB Lecture 2, Program Analysis 56/79

GDB for Dynamic Analysis

I process state inspection

I register inspection

I (machine) code inspection

I memory inspection

I memory alteration

I function call tracing

2
0
1
9
-1
0
-0
9

Lecture 2
GDB

GDB for Dynamic Analysis

GDB Basics

I starting a process

I stepping instructions

I breakpoints

I disassemble

I show registers

I display data

I trace function calls

I alter data

CSE Dep, ACS, UPB Lecture 2, Program Analysis 57/79

GDB Basics

I starting a process

I stepping instructions

I breakpoints

I disassemble

I show registers

I display data

I trace function calls

I alter data

2
0
1
9
-1
0
-0
9

Lecture 2
GDB

GDB Basics

Starting a Process

I run

I run < input file

I run arg1 arg2 arg3

I set args arg1 arg2 arg3 and then issue run

I start: breakpoint at main / starting point

CSE Dep, ACS, UPB Lecture 2, Program Analysis 58/79

Starting a Process

I run

I run < input file

I run arg1 arg2 arg3

I set args arg1 arg2 arg3 and then issue run

I start: breakpoint at main / starting point

2
0
1
9
-1
0
-0
9

Lecture 2
GDB

Starting a Process

Stepping Instructions

I si and ni

I ni doesn’t go into nested functions

I very useful for understanding programs and validating attacks

CSE Dep, ACS, UPB Lecture 2, Program Analysis 59/79

Stepping Instructions

I si and ni

I ni doesn’t go into nested functions

I very useful for understanding programs and validating attacks

2
0
1
9
-1
0
-0
9

Lecture 2
GDB

Stepping Instructions

Breakpoints

I b symbol-name

I b *address: b *0x80123456

I continue: continue until the next breakpoint

I help breakpoints

CSE Dep, ACS, UPB Lecture 2, Program Analysis 60/79

Breakpoints

I b symbol-name

I b *address: b *0x80123456

I continue: continue until the next breakpoint

I help breakpoints

2
0
1
9
-1
0
-0
9

Lecture 2
GDB

Breakpoints

Disassembling

I during runtime

I disass symbol-name: disass printf

I help disassemble

CSE Dep, ACS, UPB Lecture 2, Program Analysis 61/79

Disassembling

I during runtime

I disass symbol-name: disass printf

I help disassemble

2
0
1
9
-1
0
-0
9

Lecture 2
GDB

Disassembling

Displaying Data

I show memory data or registers

I info registers

I p $eax

I p *0x80123456

I x/10x 0x12345678: examine memory and display in hex

I x/10s 0x12345678: examine memory and display in string

I x/10i 0x12345678: examine memory and display in
instructions

I help p

I help x

CSE Dep, ACS, UPB Lecture 2, Program Analysis 62/79

Displaying Data

I show memory data or registers

I info registers

I p $eax

I p *0x80123456

I x/10x 0x12345678: examine memory and display in hex

I x/10s 0x12345678: examine memory and display in string

I x/10i 0x12345678: examine memory and display in
instructions

I help p

I help x2
0
1
9
-1
0
-0
9

Lecture 2
GDB

Displaying Data

Find Data in Memory

I find "sh"

I find 0x01020304

I find 0x400000, 100000, "sh"

CSE Dep, ACS, UPB Lecture 2, Program Analysis 63/79

Find Data in Memory

I find "sh"

I find 0x01020304

I find 0x400000, 100000, "sh"

2
0
1
9
-1
0
-0
9

Lecture 2
GDB

Find Data in Memory

Trace Function Calls

I backtrace: show function trace

I up, down: update current call stack

I http://web.mit.edu/gnu/doc/html/gdb_8.html

CSE Dep, ACS, UPB Lecture 2, Program Analysis 64/79

Trace Function Calls

I backtrace: show function trace

I up, down: update current call stack

I http://web.mit.edu/gnu/doc/html/gdb_8.html

2
0
1
9
-1
0
-0
9

Lecture 2
GDB

Trace Function Calls

http://web.mit.edu/gnu/doc/html/gdb_8.html
http://web.mit.edu/gnu/doc/html/gdb_8.html

Alter Data

I set variable num = 10

I set {int}0x8038290 = 10

I set $eax = 0x12345678

CSE Dep, ACS, UPB Lecture 2, Program Analysis 65/79

Alter Data

I set variable num = 10

I set {int}0x8038290 = 10

I set $eax = 0x12345678

2
0
1
9
-1
0
-0
9

Lecture 2
GDB

Alter Data

PEDA

I Python Exploit Development Assistance

I enhancement for GDB

I create cyclic patterns

I Return Oriented Programming features

I custom view: code, registers, stack

I shellcode features

I telescope an address (follow pointers)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 66/79

PEDA

I Python Exploit Development Assistance

I enhancement for GDB

I create cyclic patterns

I Return Oriented Programming features

I custom view: code, registers, stack

I shellcode features

I telescope an address (follow pointers)

2
0
1
9
-1
0
-0
9

Lecture 2
GDB

PEDA

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

CSE Dep, ACS, UPB Lecture 2, Program Analysis 67/79

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Linking and Loading

Outline

Times in Getting from Source Code to Process

I compile time: when translating source code to object code in
object files (using gcc, gas, nasm)

I link time: when aggregating multiple object files into an
executable file (using gcc, ld)

I load time: when executable is loaded in memory and a process
is created (using ./program)

I run time: while the process is running (using strace -p, lsof -p)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 68/79

Times in Getting from Source Code to Process

I compile time: when translating source code to object code in
object files (using gcc, gas, nasm)

I link time: when aggregating multiple object files into an
executable file (using gcc, ld)

I load time: when executable is loaded in memory and a process
is created (using ./program)

I run time: while the process is running (using strace -p, lsof -p)

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Linking and Loading

Times in Getting from Source Code to Process

Linking and Loading

I linking is getting object files together into an executable or
dynamic-linking file

I for the linker, object files are input and executables are output

I loading is getting an executable into memory and starting a
process

I for the loader, executable file is input, process is output

CSE Dep, ACS, UPB Lecture 2, Program Analysis 69/79

Linking and Loading

I linking is getting object files together into an executable or
dynamic-linking file

I for the linker, object files are input and executables are output

I loading is getting an executable into memory and starting a
process

I for the loader, executable file is input, process is output

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Linking and Loading

Linking and Loading

Static linking

I all symols are solved at link time

I all code is part of the executable

I static executables

I large executable files, but with no dependencies, highly
portable

CSE Dep, ACS, UPB Lecture 2, Program Analysis 70/79

Static linking

I all symols are solved at link time

I all code is part of the executable

I static executables

I large executable files, but with no dependencies, highly
portable

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Linking and Loading

Static linking

Load Time Dynamic Linking

I symbols are marked as stubs inside the executable file

I symbols are solved at load time, the moment the process is
created

I symbols are picked from dynamic-linking library files

I provides reduced size executable files but requires
dependencies to be satisfied

CSE Dep, ACS, UPB Lecture 2, Program Analysis 71/79

Load Time Dynamic Linking

I symbols are marked as stubs inside the executable file

I symbols are solved at load time, the moment the process is
created

I symbols are picked from dynamic-linking library files

I provides reduced size executable files but requires
dependencies to be satisfied

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Linking and Loading

Load Time Dynamic Linking

Run Time Dynamic Linking

I linking (and loading) is done at runtime

I it may be implicit (lazy binding) or explicit

I dlopen, dlsym for the explicit case: explicitly load a library and
locate a symbol

CSE Dep, ACS, UPB Lecture 2, Program Analysis 72/79

Run Time Dynamic Linking

I linking (and loading) is done at runtime

I it may be implicit (lazy binding) or explicit

I dlopen, dlsym for the explicit case: explicitly load a library and
locate a symbol

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Linking and Loading

Run Time Dynamic Linking

Lazy Binding

I postpone linking of a symbol until it is called

I usually done for functions through the use of a trampoline
section (PLT for ELF)

I the first time a function is called, the dynamic linker also does
the binding

CSE Dep, ACS, UPB Lecture 2, Program Analysis 73/79

Lazy Binding

I postpone linking of a symbol until it is called

I usually done for functions through the use of a trampoline
section (PLT for ELF)

I the first time a function is called, the dynamic linker also does
the binding

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Linking and Loading

Lazy Binding

Locating Libraries

I for stating linking, use the -L argument to gcc

I for dynamic linking, the dynamic linker/loader is used:
ld-linux.so

I man ld-linux.so

I searches for

1. values in LD_LIBRARY_PATH

2. the /etc/ld.so.cache file; populated by ldconfig

3. the default /lib and /usr/lib library folders

CSE Dep, ACS, UPB Lecture 2, Program Analysis 74/79

Locating Libraries

I for stating linking, use the -L argument to gcc

I for dynamic linking, the dynamic linker/loader is used:
ld-linux.so

I man ld-linux.so

I searches for

1. values in LD_LIBRARY_PATH

2. the /etc/ld.so.cache file; populated by ldconfig

3. the default /lib and /usr/lib library folders

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Linking and Loading

Locating Libraries

PLT

I used for external library function calls

I generic trampoline code to jump to initially jump to
per-function binder (.plt in ELF)

I writable data area storing function pointers (.got.plt)
I initially store pointers to binder code (symbol solver)
I after the first call store actual pointer to function call

CSE Dep, ACS, UPB Lecture 2, Program Analysis 75/79

PLT

I used for external library function calls

I generic trampoline code to jump to initially jump to
per-function binder (.plt in ELF)

I writable data area storing function pointers (.got.plt)
I initially store pointers to binder code (symbol solver)
I after the first call store actual pointer to function call

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Linking and Loading

PLT

GOT

I Global Offset Table

I .got in ELF for global variables

I .got.plt in ELF for external library function pointers

I local uses of external library symbol point to GOT

I GOT if filled by the dynamic linker at the beginning

CSE Dep, ACS, UPB Lecture 2, Program Analysis 76/79

GOT

I Global Offset Table

I .got in ELF for global variables

I .got.plt in ELF for external library function pointers

I local uses of external library symbol point to GOT

I GOT if filled by the dynamic linker at the beginning

2
0
1
9
-1
0
-0
9

Lecture 2
Dynamic Linking and Loading

GOT

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

CSE Dep, ACS, UPB Lecture 2, Program Analysis 77/79

Outline

From Source Code to Process

The ELF Format

Linking

Tools of the Trade for Binary Static Analysis

Dynamic Analysis

Tools for Dynamic Analysis

GDB

Dynamic Linking and Loading

Conclusion

2
0
1
9
-1
0
-0
9

Lecture 2
Conclusion

Outline

Keywords

I static analysis

I dynamic analysis

I executable

I ELF

I readelf

I section

I segment

I disassembling

I objdump

I symbols

I linker

I process

I strace / ltrace

I lsof / pmap

I perf

I GDB

I breakpoint

I info

I examine

I ni, si

I backtrace, up, down

I write

I searchmem

I dynamic linking

I dynamic loading

I lazy binding

I trampoline

I PLT

I GOT

CSE Dep, ACS, UPB Lecture 2, Program Analysis 78/79

Keywords

I static analysis

I dynamic analysis

I executable

I ELF

I readelf

I section

I segment

I disassembling

I objdump

I symbols

I linker

I process

I strace / ltrace

I lsof / pmap

I perf

I GDB

I breakpoint

I info

I examine

I ni, si

I backtrace, up, down

I write

I searchmem

I dynamic linking

I dynamic loading

I lazy binding

I trampoline

I PLT

I GOT

2
0
1
9
-1
0
-0
9

Lecture 2
Conclusion

Keywords

Useful Links

I http://www.skyfree.org/linux/references/ELF_Format.pdf

I ftp://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html

I https://msdn.microsoft.com/en-us/library/windows/desktop/

ee416588(v=vs.85).aspx

I https://www.technovelty.org/linux/

plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html

CSE Dep, ACS, UPB Lecture 2, Program Analysis 79/79

Useful Links

I http://www.skyfree.org/linux/references/ELF_Format.pdf

I ftp://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html

I https://msdn.microsoft.com/en-us/library/windows/desktop/

ee416588(v=vs.85).aspx

I https://www.technovelty.org/linux/

plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html

2
0
1
9
-1
0
-0
9

Lecture 2
Conclusion

Useful Links

http://www.skyfree.org/linux/references/ELF_Format.pdf
ftp://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588(v=vs.85).aspx
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
http://www.skyfree.org/linux/references/ELF_Format.pdf
ftp://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588(v=vs.85).aspx
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html

	From Source Code to Process
	The ELF Format
	Linking
	Tools of the Trade for Binary Static Analysis
	Dynamic Analysis
	Tools for Dynamic Analysis
	GDB
	Dynamic Linking and Loading
	Conclusion

