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Abstract—Is it possible to generate a fully-developed world 

which looks entirely realistic, is built randomly starting from a seed 

and using no data whatsoever? With this paper the authors try to give 

an answer to this question. A set of methods from the scientific 

literature blended with some newly-proposed ones will be employed 

to generate an entire planet using only fractals, procedural models, 

mathematically-described objects and constructive solid geometry. 

Elements such as vegetation, mountains, water, waves, rocky and 

sandy soil and clouds will be built. Perlin noise function is used as a 

scalable solution for water, terrain and cloud generation. Another 

proposed method is for vegetation distribution, based on roulette 

selection, a stage of genetic algorithms. 

 

Keywords—fractal generation procedures, fractal geometry, 

fractal vegetation, water generation. 

I. INTRODUCTION 

A. History 

NCONVENTIONAL mathematician Benoit Mandelbrot 

created the term fractal from the Latin word "fractus", 

which means irregular or fragmented, in 1975. These irregular 

and fragmented shapes are all around us. Fractals are a visual 

expression of a repeating pattern or formula that starts simple 

and becomes progressively more complex. [1] 

One of the first applications of fractals emerged long before 

the term had been created. Lewis Fry Richardson was an early 

twentieth century English mathematician who studied the 

length of the coast of England. He reasoned that the length of 

the coastline depends on the length of the measuring 

instrument. Measuring with a measuring instrument gives a 

length, but considering the more irregular coastline by 

measuring with a smaller apparatus gives a longer length. [2] 

If there is a philosophical conclusion to reach, there is an 

infinite coastline containing a finite space. The same paradox 

was presented by Helge von Koch’s snowflake. [3] 

This fractal involves taking a triangle and transforming each 

central third of each segment in a triangular bump, in a way 
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that makes the fractal symmetric. 

 
Each bump is certainly longer than the initial segment, but 

still contains finite space inside. What is strange is that the 

perimeter moves towards infinity rather than to converge to a 

special number. 

Mandelbrot saw this and used this example to explore the 

concept of fractal dimension and to prove that the measuring 

of the coast is an exercise of approximation. [3] 

B. Characteristics 

The characteristics of fractals were for the first time 

indicated by Alain Boutot: “It has a fine structure with details 

on all scales of observation; It is too irregular to be described 

in the language of Euclidean geometry, both locally and 

globally; It is a self-similar structure: it is the analog of the 

whole; It has fractal dimension higher than the topological 

dimension”. 

1) Self-similarity 

Property of self-similarity means that the parts are similar to 

the whole, with variations. Fig.2 contains, on the left side, a 

zoomed-out image of Sierpinski Gasket, the poster child of 

fractals, and on the right side, there is a zoomed-in image, 

revealing the scaling and self-similarity the characterize 

fractals.[20] 
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Fig. 2 Sierpinski Gasket [19] 

 

 
Fig.1 Helge von Koch’s snowflake (2008) [3] 



 

 

2) Scaling 

Because of self-similarity, features at one spatial resolution 

are related at other spatial resolutions. The smaller features are 

smaller copies of the larger features. The length at finer 

resolution will be longer because these finer features are 

included. The way the measured properties depend on the 

resolution used to make the measurement is called the scaling 

relationship. [20] 

3) Bounded infinity 

Bounded infinity means that one can trace infinite length 

within a finite boundary, as demonstrated in the Koch 

snowflake’s infinite line length circumscribing a finite area. 

In other words, the fractal object can be represented by 

using a recursive function: 

 

…f(f(x)),f(x),x,                 (1) 

 

The recursive process ensures that connections will be 

made, but we see only parts of the whole. [20] 

4) Fractal dimension 

In Euclidian geometry, one dimension is represented by a 

line. In two dimensions, it is Cartesian space and in higher 

dimensions, it is a coordinate space with three or more integer 

number coordinates. Mandelbrot said that the fractals have the 

property of fractional dimensions. For a self-similar fractal, the 

dimension (Hausdorff dimension, named after mathematician 

bearing the same name) is defined as:  

 

csd  ,                    (2) 
 

where d is the Hausdorff dimension, c the amount of new 

copies you get after one iteration and s is the scaling factor. 

Using the logarithmic laws, the formula is: [22] 

 

s log

c log
=d                    (3) 

 

C. The elements of a fractal 

A vector-base fractal is composed of two parts: the initiator 

and the generator. In Fig.3, the generator and the initiator for 

Koch Snowflake are represented. 

 
It starts with an equilateral triangle as the initiator and a line 

that is divided into three equal segments as the generator. 

The first iteration is realized by replacing every line of the 

initiator with the full generator. A snowflake can be 

approximated by iterating this operation again and again 

(Fig.4), replacing every line of the new initiator with the full 

generator. To generate a real Koch Snowflake, an infinite 

process is necessary, but in practice, the process ends after a 

finite number of iterations. [23] 

 

D. The generation of fractal objects 

In order to generate fractal objects, several techniques are 

implied, all of which use the feedback processes (Fig.5) in 

which the output of one iteration is used as input for the next 

one. [24] 

 
1) Generation of fractals using formal languages 

These languages, which are used for biomorphological 

descriptions, are known as L-systems (Lindenmayer systems). 

Filamentous organisms can be formalized and described by 

combining L-systems with branching patterns. Firstly, L-

systems generate strings in a feedback loop (Fig.5). Then, in 

order to translate the strings into morphological description, 

additional drawing rules are necessary. This translation is 

necessary because the strings do not contain geometric 

information. [24]. 

Formal languages are the most suitable for generating plant-

like objects. 

2) Generation of fractal objects using Function Systems 

A second approach for generating fractal objects is a 

method based on Iterated Function Systems (IFS). This 

method is used for a large class of fractal objects and it may 

also be applied for modelling natural objects. The IFS consists 

of a d-dimensional space set of mapping into itself (4) and a 

set of corresponding probabilities (5). [24] 
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Fig. 3 Generator and Initiator by M.M. de Ruiter [23] 

 

 
Fig. 5 Diagram of a feedback process by N. Mukaia [24] 

 

 
Fig. 4 The Koch Snowflake – Iterations by M.M. de Ruiter [23] 
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3) Geometric construction of fractals 

Many fractal objects may be generated with geometric 

constructions. The class of fractals created using this method is 

known as linear fractals class. A part of linear fractals can be 

represented by the initiator (initial polygon), generator and the 

production rule. In addition to the production rules geometric 

information is also necessary, which is stored in data 

structures. 

The main advantage of this class of fractals is that geometric 

production rules can be designed interactively and in a, 

relatively, easy way. [24] 

4) Non-linear complex mappings generation 

The most important part of the fractals is represented by 

fractals in which relation between input and output (Fig.5) is 

non-linear, using complex variables and parameters. Two 

examples of fractals included in this class are: Mandelbrot and 

Julia sets. [24] 
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From (6) and (7), using decomposition the complex 

mapping into real and imaginary part: 
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For each point in the complex field it can be determined 

how many iterations are needed until a point escapes to other 

points of attraction or towards infinity. For both cases, 

stopping criteria are formulated and for each mapping, it is 

possible to count how many iterations are necessary until one 

or more of these criteria are reached. The number iterations is 

used as an argument for color function. [24] 

II. RELATED PROJECTS 

The most used software programs that use concepts adjacent 

to this project are: Acropora, Terragen and BRL-CAD. 

A. Acropora 

Acropora is a procedural modeling program that combines 

volumetric modifiers with sampling of 3D noise of multiple 

octaves, to generate detailed surfaces in much less time than 

conventional modeling surfaces software can. Acropora adopts 

a less deterministic approach to generate complex and organic 

shapes by applying sequences of modifiers on large voxelized 

meshes. 

The result is an infinite and continuous surface that curls 

and changes in a natural way. Resulted meshes contain caves, 

ridges, bumps and other natural features that cannot be created 

with height maps. [4] 

Meshes generated in Acropora can be further divided into 

multiple segments, which can in turn be further subdivided 

into different levels of detail. 

 
1) How it works 

A mesh generation begins with a basic geometry and it 

combines the complex noise sampling with the user-specified 

form modifiers to generate a single field density, which is then 

marked to generate a surface that becomes the final mesh. 

After the isosurface is extracted, then the user can level, 

optimize or filter the resulting mesh. Evaluation of the density 

function is numerically intensive, therefore, the volume is 

often broken into blocks. However, mesh-sized operations can 

be performed globally on the entire mesh or on the selected 

blocks. Acropora automatically takes care of alignment, 

ensuring a joint line between the adjacent mesh sites. 

GPU support offers real-time response when editing 

volumes. In addition to applying the global modifiers, the user 

can create localized regions or volumes, which work in tandem 

or independently of other regions. 

Acropora can also be used to test and develop procedural 

surfaces that later can be used for generating meshes in 

hardware. [4] 

2) Semi-deterministic approach 

Math-Modeling of voxels is by its nature a non-precision 

approach to sculpting surfaces. While 3D models can be 

sampled by voxels, Acropora renders complex surfaces that 

are difficult to render using conventional modeling. 

The complex surfaces that can be rendered in Acropora are 

caves, complex organic shapes, and realistic clusters of rocks, 

projections and canyons. The user can control the intensity and 

quality of the surface structures. 

B. Terragen 

Terragen is a program for Microsoft Windows and Mac OS 

X, developed and published by Planetside Software, which 

generates landscapes. It can be used to create renderings and 

animations of landscapes. [5] 

Terragen is a designing and rendering software for 

photorealistic 3D environments. It is widely used in a broad 

spectrum of industries from visual effects to games or art. [5] 

1) Overview 

Terragen is popular among amateur artists, because it has a 

simple freeware version with an intuitive interface and it is 

able to create photorealistic landscapes. It can also use DEM 

 

 

Fig. 6 Generating a noise spiral in Acropora (2015) [4] 



 

 

files and other surface maps for rendering. 

The commercial version of the software available is able to 

create larger fields, renderings with higher resolutions, use 

larger terrain files and use a better anti-aliasing algorithm. 

The terrain, clouds and objects are constructed from two 

dimensional height maps that are procedurally generated. 

Terragen is not a game engine, it uses algorithms that 

simulate skies, outdoor lighting, and terrain textures, being 

also capable of rendering very large and very detailed terrains. 

[5] 

C. BRL-CAD 

BRL-CAD is a powerful modeling combinatorial system, 

which is cross-platform and open source. It includes 

interactive 3D geometry editing, ray-tracing support for high 

quality rendering and geometric analysis, support for network 

distributed framebuffers, tools for image and signal 

processing, path-tracing support and photon mapping for 

realistic image synthesis, a suite of performance evaluation and 

analysis systems, embedded scripting interface libraries for 

robust geometric representation and high performance 

analysis. 

For more than two decades, BRL-CAD was a solid 

modeling CAD system used primary for the US military to 

model weapons systems for vulnerability analysis and lethality 

[6]. This package was also used in the planning of radiation 

doses, medical views, computer graphics education, CSG 

concepts and modeling education, performance evaluation 

tests of systems and many other purposes. Today the solid 

modeling system is often used in a wide range of applications, 

from academic to industrial and military, including the design 

and analysis of vehicles and mechanical parts. 

BRL-CAD supports a wide variety of geometric 

representations including an extensive set of traditional CSG 

primitive solids such as boxes, ellipses, cones and tori, as well 

as explicit solids made from closed collections of B-Spline 

uniform surfaces, non-uniform rational B-Spline, n-Manifold 

geometry and mesh geometry. 

All geometric objects that are obtained in BRL-CAD can 

then be combined using Boolean CSG operations, including 

unions, intersections and differences. [6] 

III.  ALGORITHMS 

After presenting the fundamental theory and existing 

applications, the paper will now go into more detail and 

present ways for building objects like water waves, lands with 

mountains, clouds, vegetation, soil with sand or rocks and land 

textures, generated mathematically. [7] 

A. Generation of water 

To generate water waves there are several algorithms. The 

main types of waves used are sine waves, Gerstner waves and 

FFT waves. There are also algorithms for generating turbulent 

waves, algorithms for generating waves for shallow water and 

algorithms for generating movement of incompressible viscous 

fluids using the Navier Stokes equations. 

Everything can be calculated mathematically, including 

water color and its reflection and refraction. 

There are also developed algorithms for generating caustic 

and foam, water drops and bubbles, using systems of particles. 

[7] 

 
1) Sine Waves 

Sine waves are calculated using sums of sines, which are 

continuous functions that describes the height and orientation 

of the water surface at all points of the plane. 

The height of each wave according to the horizontal 

position (x,y) and time t is defined as: 

 

    iiiii twyxDAtyxW  ,sin,,      (9) 

 

where: 

iA  is the amplitude, 

iD  is the direction, the horizontal vector that is perpendicular 

to the wave front which moves along the top of the wave, 

iw  is the frequency, 

i  is the phase constant and 

  S , where S  is the speed, also known as the distance 

the wave travels at the top of a frame, and L/2  , where 

L  is the length of the wave, that is the distance between the 

peaks of the waves. 

For all  yx,  in the horizontal plane 2D, the 3D position of 

the sine waves surface is: 

 

    tyxHyxtyxP ,,,,,,             (10) 

 

where  tyxH ,,  is the total area, and is defined as: 

 

    tyxWtyxH i ,,,, . [7] 

 

2) Gerstner waves 

Unlike sine waves, which have a rounded appearance and 

are suitable for calmer waters, Gerstner waves can control 

steepness, thus sharp waves can be generated, making them 

more suitable for rough waters. 

For all  in the horizontal plane 2D, the 3D position of 

the Gerstner surface waves is: 

 

 
Fig. 7 Gerstner Waves (2007) [7] 



 

 

 

 
     

 
















 tyxH

y

tyxH
y

x

tyxH
xtyxP ,,,

,,'
,

,,'
,,   (11) 

 

where t  is the time, 
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  is the partial derivative of  tyxH ,,'  in x  
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 are the same as in the case of sine waves. 

In addition to the sine waves, Gerstner waves control the 

inclination of the wave through the iQ parameter. If its value 

is zero the obtained Gerstner waves are similar to sine waves. 

Unlike sine waves, the Gerstner waves and points move 

sideways and even if the overall wave height is the same, 

Gerstner waves are more realistic because sharp waves can be 

obtained. [7] 

3) FFT waves 

FFT waves are not based on any physical model, but they 

are based on statistical models emerged from actual 

observations of oceans and seas. These waves have been used 

commercially several times, especially for movie animation 

seas and oceans. 

In statistical models and crafts, wave height is a random 

variable, being a function of horizontal position and time. In 

order to obtain FFT waves the wave height field is split into a 

set of sine waves with different amplitudes and phases, after 

which inverse FFT transform is used to rapidly assess the 

amount obtained. [7] 

4) Agitated waves 

The FFT algorithm for generating waves produces waves 

that have rounded edges, suggesting calmer weather. To get 

restless waves, with sharper peaks and flatted bases, instead of 

directly modifying the height field, the positions of the points 

need to be moved horizontally. 

FFT waves are an alternative for sine waves, while the 

restless waves are an alternative Gerstner waves, and although 

the algorithms to generate the waves are different, the results 

are similar. [7] 

Another method to simulate agitated water is by using Perlin 

noise. The advantage of scalability makes Perlin noise the 

most suitable option to simulate very wide surfaces. (Fig. 8) 

 
5) Waves for shallow waters 

For shallow water, waves are generated with the Saint 

Venant equations that are partial hyperbolic differential 

equations which describe the flow of a fluid underneath a 

surface of pressure. [7] 

6) Fluid Movement 

Incompressible viscous fluid motion is described entirely by 

the Navier Stokes equations. In these equations there are three 

types of forces that act: body forces, pressure and viscous 

forces. 

Body forces are the forces acting on the entire surface of the 

water. It is generally assumed that these forces are formed only 

from gravity. Pressure forces act upon the inside of the fluid 

and upon the surface normal, and the forces due to friction of 

the water are the viscous forces and they act in all directions 

over the entire surface of the water. [8] 

7) Water Color 

The color of the water is generally given by the reflection 

and refraction, but the water may also have a color which 

depends on the direction of the incident light beam, the 

direction of viewing and the properties of the water. [8] 

8) Reflection and refraction of water 

Most visual effects of the water are caused by the reflection 

and refraction. This occurs when a ray strikes the surface of 

the water, and part of it is reflected back into the atmosphere 

and the other part is refracted in the volume of water. 

 
One of the most important visual aspects of realistic 

rendering of water is obtained through the Fresnel equation 

 

 
Fig. 9 Ocean with Gerstner waves, reflection and refraction by 

Jerry Tessendorf (2005) [8] 

 

 
Fig. 8 Perlin noise water 



 

 

which defines a factor of combination between reflection and 

refraction. [8] 

Fig. 9 presents the current state of the project that includes 

Gerstner wave generated water, and water color formed by 

reflection and refraction. 

9) Caustics 

Caustics result from reflected or refracted light rays on a 

curved surface and therefore they focus only in certain areas of 

the receiving surface. They can be generated “fractally” or 

mathematically. [9] 

10) Foam, drops and water bubbles 

When the water surface is very agitated or when it 

encounters obstacles it generates foam, water drops and 

bubbles due to breaking waves. This can be achieved by means 

of a system of particles that will be based on Newtonian 

dynamics. [9] 

11) Generation of rivers 

The classical method for generating rivers is a part of 

height-map generation algorithm. The algorithm generates a 

terrain model around a precomputed set of ridge lines and 

rivers network. First, a rapid method that generates the ridges 

and rivers network is used. Then, an extension of the basic 

midpoint displacement method is applied for generating fractal 

terrain model around a pre-filled ridges and rivers network. 

[18] 

 
In Fig.10, the left image shows: in black color the computed 

elevations and in the white color the elevations that still have 

to be computed. In the right image, in black/gray color,  the 

tridimensional view of D.E.M is represented, in red, the 

elevations computed with the M.D.I. process and in white, the 

elevations that still have to be computed. [18] 

The second approach is a post-processing step on the 

existing height-map. For the first one, a generated river 

network forms a basis from which a height-map is inferred. 

For the last one, a height-map is analyzed to find the potential 

stream routes from mountains into valleys. [15] 

12) Generation of oceans and lakes 

Procedural water bodies, such as oceans and lakes and their 

connections, stream networks, deltas and waterfalls are 

similarly generated. Oceans are commonly generated by 

setting a fixed water level and, for lakes, the classical method 

is a flooding algorithm from points of low elevation. [15] 

B. Generation of land 

For the generation of fields with mountains there are 

multiple algorithms. [10] 

1) Transcendental land 

Transcendental lands are lands mathematically calculated 

using sine and cosine functions. Transcendental lands have a 

rounded appearance and relate to sine waves resembling water. 

[10] 

2) Fractal land 

Fractal terrains are more realistic than the transcendental 

terrains, due to the sharp mountain peaks. These fields can be 

generated using several algorithms, among which the most 

important are the median shift algorithm, Diamond-Square 

algorithm and FFT. [10] 

3) Median shift algorithm 

Median shift algorithm provides realistic results. This 

algorithm assumes that the start is a line between two points, 

then the median of that line is moved with a random value in 

the vertical direction, then the medians of the two new 

segments are moved with random values in the vertical 

direction and then the previous step is repeated until the 

desired level of detail is reached. [11] 

4) Diamond-Square algorithm 

 

 

 

 

 
Fig. 11 Fractal terrain generation using Diamond-Square algorithm 

by David P. Feldman (2012) [11] 

 

 
Fig. 10 The Midpoint Displacement's Inverse process by F. Belhadj 

(2005) [18] 



 

 

The Diamond-Square algorithm generates more realistic 

terrain than the previous algorithm, because the latter one 

leaves square objects in the field. The Diamond-Square 

algorithm mitigates this by alternating calculated values of the 

middle points of squares and diamonds. This algorithm 

assumes the start by assigning a random height of the four 

corners of the grid, and then averaging four corners, plus a 

random disturbance and assigns this value to the middle point 

of the square formed by four points. Then it takes each 

achieved diamond, it calculates the average of the four corners 

of each diamond, plus a random disturbance and assigns the 

middle point of the diamond. The previous two steps are then 

repeated until reaching the desired level of detail. [11] 

Fig.11 shows the generation of a fractal terrain using 

Diamond-Square algorithm, from the initial stages of low level 

detail in the final stages with high level of detail. [11] 

5) Improved Diamond-Square Algorithm 

In order to accelerate the process of generating terrain, it is 

used an improved algorithm. The goal of both algorithms is to 

construct a bidimensional heightmap. In the standard algorithm 

the 2D array is a square (Fig 12.a). The mid-point value is the 

average of the angles plus a random value, which is reduced 

over the steps. 

 
The standard algorithm divides the square into four triangles 

(Fig 12.b). In addition, the improved algorithm draws two 

lines between the mid-point and the mid-points of hypotenuses 

of the triangles, dividing each triangle into two small triangles. 

(Fig 12.c) [25] 

6) FFT algorithm 

Unlike the movement of the median algorithm and 

Diamond-Square algorithm which have linear running time, 

the FFT algorithm’s runtime is logarithmic. 

Another difference of the FFT algorithm is that the terrain 

has a more rounded texture and has no raised or pointed peaks. 

[12] 

At distance either less frequencies can be considered, or the 

terrain simplified for speed purposes. [14] 

7) Erosion fractal 

The height-maps can be transformed using simulations of 

physical phenomena, such as erosion. In order to diminish the 

sharp changes in elevation, thermal erosion is used, by 

iteratively distributing material from higher to lower points, 

until the maximum angle of stability for a material is reached. 

Another type of erosion is caused by rainfall or fluvial 

erosion. This type can be simulated using cellular automaton 

(model of a system of “cell” objects), where dissolved material 

that flows out to other cells and the amount of water are 

calculated based on the local slope of the elevation profile. 

[15] 

8) Digital elevation models (DEM) method 

Besides other methods, this setup allows the user to 

interactively edit the height-map. A user draws a 2D map of 

polygonal regions, each of which is marked to have a certain 

elevation profile. The straight boundaries of the regions are 

perturbed and rasterized in a grid. Then, for each region, DEM 

data is selected to match the requested elevation profile. The 

selection of data is realized using genetic algorithms. 

The main advantages of this method are: realism, 

extensibility and ease of use (intuitive control, with low input 

requirements). However, the generated transitions at the 

boundaries between regions are still rather abrupt. [16] 

C. Cloud Generation 

To generate clouds, noise functions are used in general. The 

noise that offers the most realistic results is the Perlin noise. 

Meteorological phenomena, such as lightning, can be 

mathematically generated or through fractals. Rain and snow, 

can be generated using a particle system. [7] 

Another method to generate a cloud data model is based on 

the random displacement algorithm. The process is similar to 

the generated terrain. The main difference is that we need a 

height map where vertexes have different colors and not 

different heights. 

To accomplish this, there is an additional final step in which 

the heights are mapped to colors. Firstly, the basic clouds are 

generated through the Diamond-Square algorithm. Based on 

the height map, we figure out the minimum and maximum 

height. These two values determine the mapping interval for 

heights to color interval. [25] 

1) Noise functions 

The role of noise functions is to provide a pseudo-random 

signal, efficiently implemented and repeatable over a three-

dimensional space. In general, the sound functions receive an 

integer as a seed and they return a pseudo random number 

based on the received parameter. [7] 

2) Perlin Noise 

To create a Perlin noise function, a noise and an 

interpolation function are required. The noise function must 

be, in general, a random number generator that will return the 

same value if two numbers with the same value are sent as 

input and different values if two different values are sent as a 

parameter. 

A standard interpolation function receives three parameters, 

two of which represent the values between the return value that 

must be interpolated and the third parameter based on which 

the returned value is interpolated. [13] 

D. Generation of vegetation 

Vegetation can also be generated with fractals or 

mathematically. Procedural vegetation is a classic research 

topic in the field of procedural modelling and includes both 

procedures for generating 3D plant models and trees and 

specific methods for placement on a given surface. [7] 

1) Generating plants 

There are many plants that can be generated by fractals or 

mathematically, including ferns, grass, flowers, fruits, 

vegetables or leaves. Plants can be generated using L-systems 

 

 
Fig. 12 The improved Diamond-Square algorithm [25] 



 

 

or using iterated function systems. [7] 

Branching patterns may be defined as L-systems by using K 

denoted by <G, W, P>, in which G is a set of symbols, W is 

the starting string and P is the production rule. 

Monopodial branching, in which the growth of the main axis 

continues throughout the plant’s life, may be represented by 

the following L-system [24]: 

 

PMWMGKM ,,              (12) 

 ][,,1,0G                   (13) 

0WM                    (14) 

 ]][,[,11,0]0[10 PM        (15) 

 

<Iteration> <Generated String> 

1: 0 

2: 1[0]0 

3: 1[1[0]0]1[0]0 

4: 1[1[1[0]1]1[0]0]1[1[0]0]1[0]0 

 
The drawing rule showed in Fig.13 is one possible way to 

visualize the generated string. 

An alternative system to procedurally model plants is by 

placing plant components in a graph. Connected components 

can be structured in sub-graphs. The system traverses this 

graph, generating and placing instances of the components in 

an intermediate graph that is used for geometry generation. 

A set of components is connected by the user to describe the 

structure of the plant. The algorithms are controlled by 

graphical user interface on the basis of spline functions. [17] 

2) Generation of trees 

Trees can be generated using L-systems or iterated function 

systems. An L-system is a classical and often used example of 

a rewriting system. Although the L-systems are used for 

rewriting strings of text, the resulting set of symbols can be 

interpreted in 2D and 3D. One of the best known such tree is 

the tree of Pythagoras, which is built recursively. [7] 

The L-system has an advantage in describing the random 

growth of leaves, flowers, fruits, freely and easily, but it is not 

suitable for textures, which also have self-similarity. In order 

to solve this problem, the iterated function system (IFS) is 

used. The main advantage of the IFS is that the graph is a 

colored map, texture mapping being realized easily. On the 

other hand, the plants are very similar. A combination of these 

two methods gives the best results. 

The leaves are simulated via IFS and the branches are 

generated via L-systems. The idea of these two methods is to 

generate the tree using L-systems that control the IFS’s code 

parameters. The most important advantages are: 

implementation is easy, trees look realistic and the shape detail 

of the leaf is more attractive. [27] 

Without any random affection, the tree seems too stiff and 

similar. Trees are affected by the wind and gravity and in order 

to create more natural trees, random functions are used. The 

random values are used to disturb the branch’s dip angle, 

length and size. Fig 14 (a) depicts a tree without any random 

values and Fig 14 (b) a tree generated by L-systems controlling 

IFS’s code parameters, but with added randomness. 

 
3) Vegetation distribution 

Vegetation distribution is provided by two approaches: 

explicit specification and procedural generation. The first one 

is obtained by surveying a forest or specified by the user. The 

second is realized using a point pattern generation model or an 

individual-based population model. Both methods use detailed 

information in order to construct an ecosystem. 

The problem is that these methods could not offer a suitable 

option for small areas. 

Because random selection does not offer a natural 

distribution, we came up with a method, inspired from genetic 

algorithms, more precisely, the roulette selection. 

Roulette selection is a method to pick the most suitable 

parents that are used to create the next generation. Each parent 

has assigned a selection probability based on a fitness value. A 

fitness function is an objective function which describes the 

figure of merit, how close the solution to achieve a set of goals 

is. 

In our case, we just need to decide what species is assigned 

to a tree. Firstly, a sample from each species is planted. In 

order to avoid plantation of seeds in water or in undesirable 

places, previous checks are required. After this step, for each 

element we want to plant, we need to decide which species is 

the closest, by calculating the Euclidian distance, or any other 

distance, between the element and other trees that are already 

planted. 

The fitness is inversely proportional to the minimum 

distance. We want a higher fitness values for the closest 

species. For fitness function, we selected the function: 
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Fig. 14 Trees generated by L-system controlling IFS code’s 

parameters: (a) without random (b) with random 

 

 
Fig. 13 Drawing rule for the string 1[0]0, shape A and B by N. 

Mukaia [24] 



 

 

 

In small regions n must be lower, because the minimum 

distances are similar and the entire ecosystem looks random 

(Fig 15-a). When the n value becomes lower, the entire 

distribution tends to concentrate in clusters. 

On the other hand, a very organized ecosystem like in Fig 

15-d does not look natural, either. In conclusion, the n value 

must be chosen in correspondence with the dimensions of the 

region, for natural results. 

After the fitness for each species is computed, we need to 

calculate the selection probability for each species. The 

function used for calculating the probability is: 
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where n is is the number of species and kx  is the species for 

which the selection probability is calculated. 

Because the sum of all probabilities is equal to 1, in the final 

step we distribute the probability ranges in the subunit interval 

[0, 1]. After we have the interval, we need a random 

subunitary number, based on which the selected species is 

decided. 

This method is the most suitable when we have small 

regions with no detailed information about the ecosystem or it 

is impossible to apply altitudinal vegetation zones. 

E. Soil generation 

The most important elements of this category that can be 

generated are rocks and sand. Sand dunes using noise 

functions can also be generated. [7] 

A. Peytavie1 and E. Gali came up with a complex 

framework to simulate the material layers. A terrain is defined 

as two dimensional grid of material stacks. (Fig. 16) 

 
A material stack contains different material layers that are 

characterized by their thickness and the corresponding material 

type. The types of material implemented in the framework are: 

air, water, sand, bedrock and rocks. 

Rocks are created using Voronoi cells. The first step is to 

generate a cubic tile containing these cells and the next step is 

the erosion. The process of erosion is realized at some random 

contact points so that the rocks should nicely pack together. 

The rock instantiation is realized based on the material 

layer. The instantiated rocks like their Voronoi center within a 

 

 
Fig. 16  Material stacks[28] 

 

 
(a) n=-1 

 
(b) n=-2 

 
(c) n=-4 

 
(d) n=-6 

Fig. 15 Vegetation distribution 



 

 

rock material layer [28] 

 
The elimination of small rocks that are not visible is a 

method of optimization. Therefore, all rocks whose distance to 

the surface is larger than twice the maximum radius of 

Voronoi embedding spheres are eliminated. 

Another important aspect of soil generation is the addition 

of granular material. The approach is a three dimensional 

generalization of painting tools for editing height fields. [28] 

As we can see in Fig. 18, a brush is characterized by a 

depositing region and the distribution material. This method 

enables the user to control the amount and the location of 

granular material. 

 

F. Urban environments 

The common approach for procedurally generating cities is 

to start from a dense road network and identify the polygonal 

regions enclosed by streets. Building lots are the result of 

subdivision of these regions. Then, for populating these lots, 

the lot shape is used directly as the footprint of a building 

(Fig.19). 

 
Another method is to fit the building footprint on the lot. By 

simply extruding the footprint to a random height, a city of 

skyscrapers and office buildings can be generated. These 

approaches are used to create a macro environment; for more 

complex details, several rule-based methods are necessary. 

[15] 

G. Generation of microorganisms 

One direction of application of fractals in biology is to 

artificially create biological objects or systems. A new concept 

of Mandelbrot was demonstrated by C.A. Pickover by coloring 

the created images closely corresponding to single cellular 

organisms. These organisms can be seen in Fig 20, and they 

are also named biomorphs. [26] 

 

H. Generation of textures 

Textures can be generated using height maps obtained at the 

terrain generation. [7] Another method is used for generating 

texture image such as surfaces of houses or roads. For this, 

random or fractal functions are used. This method uses two 

types of images. One is a material image and the other is a 

weathered one. The material image is generated by placing 

some fundamental patterns at random. The more patterns are 

used, the more varieties are generated. On the other hand, the 

weathered image is generated using fractal functions. 

Intended images, such as a texture that represents a water 

drop track on the wall, can be realized by selecting the fractal 

seeds. Also, combining both material and weathered images 

can make more realistic images for texture mapping. The 

generated images look very natural and enable the very 

realistic data modelling of landscape simulation. [24] 

Another method for texture generation is using Perlin noise. 

Because one of the most important advantages is the 

scalability, Perlin noise is suitable for texturing large regions 

of terrain. 

 

 

 
 

Fig. 21 Large-scale Perlin noise for normal map distortion 

 

 
Fig. 20 Examples of cellular organisms created using fractals [26] 

 

 
Fig. 19 Procedural sketching session: a) river flowing towards the 

sea, b) road feature crossing the river, c) city created along the river 

banks by R.M. Smelik (2011) [15] 

 

 
Fig. 18 Granular material on initial bedrock layer [28] 

 

 
Fig. 17 Rock instantiation process [28] 



 

 

In Fig. 21, Perlin noise was generated at a very large scale 

to simulate grass, using normal map distortion. 

The same function, generated at a small scale was used to 

simulate different levels of aridity, by changing the base color 

as in Fig. 22. 

 

I. Generation of other elements 

The most important of these elements are animals such as 

spiders, snails, peacocks, sea urchins and starfish, but the 

generation of stalagmites and stalactites and crystals is also 

possible. [7] 

IV. CONCLUSIONS 

This paper presented techniques to generate many classes of 

objects on the basis of equations, possibly with minimal data, 

such as a seed. Items that can be randomly generated include: 

terrain, terrain textures, terrain elements (sand, rocks), clouds, 

vegetation, soil and water. All the aforementioned generation 

techniques were included in “A Fractal World” project 

designed by the authors to prove that simple mathematical 

techniques may be employed to generate realistically 

environments from virtually no data and randomly evolving 

starting from a seed and running up to a custom level of detail. 

The project was designed with educational purpose in mind, 

carrying the strong desire that in the end it will enclose almost 

all the important ideas in the fractal world generator and also it 

will allow students to customize the techniques, tweak the 

algorithms for even more realism and perform optimizations 

for better viewing performance. “A Fractal World” [29] aims 

at generating “fully-mathematical” planets using a 

configurable amount of detail and computing power and to 

serve as a powerful educational tool for computer graphics 

students to integrate their knowledge and original ideas. 
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Fig. 22 Small-scale Perlin noise for levels of aridity 


