



Abstract—Is it possible to generate a fully-developed world

which looks entirely realistic, is built randomly starting from a seed

and using no data whatsoever? With this paper the authors try to give

an answer to this question. A set of methods from the scientific

literature blended with some newly-proposed ones will be employed

to generate an entire planet using only fractals, procedural models,

mathematically-described objects and constructive solid geometry.

Elements such as vegetation, mountains, water, waves, rocky and

sandy soil and clouds will be built. Perlin noise function is used as a

scalable solution for water, terrain and cloud generation. Another

proposed method is for vegetation distribution, based on roulette

selection, a stage of genetic algorithms.

Keywords—fractal generation procedures, fractal geometry,

fractal vegetation, water generation.

I. INTRODUCTION

A. History

NCONVENTIONAL mathematician Benoit Mandelbrot

created the term fractal from the Latin word "fractus",

which means irregular or fragmented, in 1975. These irregular

and fragmented shapes are all around us. Fractals are a visual

expression of a repeating pattern or formula that starts simple

and becomes progressively more complex. [1]

One of the first applications of fractals emerged long before

the term had been created. Lewis Fry Richardson was an early

twentieth century English mathematician who studied the

length of the coast of England. He reasoned that the length of

the coastline depends on the length of the measuring

instrument. Measuring with a measuring instrument gives a

length, but considering the more irregular coastline by

measuring with a smaller apparatus gives a longer length. [2]

If there is a philosophical conclusion to reach, there is an

infinite coastline containing a finite space. The same paradox

was presented by Helge von Koch’s snowflake. [3]

This fractal involves taking a triangle and transforming each

central third of each segment in a triangular bump, in a way

C. A. Boiangiu is with the Computer Science Department from

“Politehnica” University of Bucharest, Romania (e-mail:

costin.boiangiu@cs.pub.ro). The original research carried by C. A. Boiangiu

was supported by Electronic Arts Romania S.R.L.

A. G. Morosan is with the Computer Science Department from

“Politehnica” University of Bucharest, Romania (e-mail:

adrian.morosan@cti.pub.ro).

M. Stan is with the Computer Science Department from “Politehnica”

University of Bucharest, Romania (e-mail: marian.stan@cti.pub.ro).

that makes the fractal symmetric.

Each bump is certainly longer than the initial segment, but

still contains finite space inside. What is strange is that the

perimeter moves towards infinity rather than to converge to a

special number.

Mandelbrot saw this and used this example to explore the

concept of fractal dimension and to prove that the measuring

of the coast is an exercise of approximation. [3]

B. Characteristics

The characteristics of fractals were for the first time

indicated by Alain Boutot: “It has a fine structure with details

on all scales of observation; It is too irregular to be described

in the language of Euclidean geometry, both locally and

globally; It is a self-similar structure: it is the analog of the

whole; It has fractal dimension higher than the topological

dimension”.

1) Self-similarity

Property of self-similarity means that the parts are similar to

the whole, with variations. Fig.2 contains, on the left side, a

zoomed-out image of Sierpinski Gasket, the poster child of

fractals, and on the right side, there is a zoomed-in image,

revealing the scaling and self-similarity the characterize

fractals.[20]

A Fractal World: Building Visually-Rich and

Fully-Realistic Natural Environments

Costin A. Boiangiu, Adrian G. Morosan, and Marian Stan

U

Fig. 2 Sierpinski Gasket [19]

Fig.1 Helge von Koch’s snowflake (2008) [3]

2) Scaling

Because of self-similarity, features at one spatial resolution

are related at other spatial resolutions. The smaller features are

smaller copies of the larger features. The length at finer

resolution will be longer because these finer features are

included. The way the measured properties depend on the

resolution used to make the measurement is called the scaling

relationship. [20]

3) Bounded infinity

Bounded infinity means that one can trace infinite length

within a finite boundary, as demonstrated in the Koch

snowflake’s infinite line length circumscribing a finite area.

In other words, the fractal object can be represented by

using a recursive function:

…f(f(x)),f(x),x, (1)

The recursive process ensures that connections will be

made, but we see only parts of the whole. [20]

4) Fractal dimension

In Euclidian geometry, one dimension is represented by a

line. In two dimensions, it is Cartesian space and in higher

dimensions, it is a coordinate space with three or more integer

number coordinates. Mandelbrot said that the fractals have the

property of fractional dimensions. For a self-similar fractal, the

dimension (Hausdorff dimension, named after mathematician

bearing the same name) is defined as:

csd  , (2)

where d is the Hausdorff dimension, c the amount of new

copies you get after one iteration and s is the scaling factor.

Using the logarithmic laws, the formula is: [22]

s log

c log
=d (3)

C. The elements of a fractal

A vector-base fractal is composed of two parts: the initiator

and the generator. In Fig.3, the generator and the initiator for

Koch Snowflake are represented.

It starts with an equilateral triangle as the initiator and a line

that is divided into three equal segments as the generator.

The first iteration is realized by replacing every line of the

initiator with the full generator. A snowflake can be

approximated by iterating this operation again and again

(Fig.4), replacing every line of the new initiator with the full

generator. To generate a real Koch Snowflake, an infinite

process is necessary, but in practice, the process ends after a

finite number of iterations. [23]

D. The generation of fractal objects

In order to generate fractal objects, several techniques are

implied, all of which use the feedback processes (Fig.5) in

which the output of one iteration is used as input for the next

one. [24]

1) Generation of fractals using formal languages

These languages, which are used for biomorphological

descriptions, are known as L-systems (Lindenmayer systems).

Filamentous organisms can be formalized and described by

combining L-systems with branching patterns. Firstly, L-

systems generate strings in a feedback loop (Fig.5). Then, in

order to translate the strings into morphological description,

additional drawing rules are necessary. This translation is

necessary because the strings do not contain geometric

information. [24].

Formal languages are the most suitable for generating plant-

like objects.

2) Generation of fractal objects using Function Systems

A second approach for generating fractal objects is a

method based on Iterated Function Systems (IFS). This

method is used for a large class of fractal objects and it may

also be applied for modelling natural objects. The IFS consists

of a d-dimensional space set of mapping into itself (4) and a

set of corresponding probabilities (5). [24]

},...,,,{ 321 nMMMMM  (4)

},...,,,{ 321 nPPPPP  (5),

Fig. 3 Generator and Initiator by M.M. de Ruiter [23]

Fig. 5 Diagram of a feedback process by N. Mukaia [24]

Fig. 4 The Koch Snowflake – Iterations by M.M. de Ruiter [23]

in which: 1
1




n

i

iP .

3) Geometric construction of fractals

Many fractal objects may be generated with geometric

constructions. The class of fractals created using this method is

known as linear fractals class. A part of linear fractals can be

represented by the initiator (initial polygon), generator and the

production rule. In addition to the production rules geometric

information is also necessary, which is stored in data

structures.

The main advantage of this class of fractals is that geometric

production rules can be designed interactively and in a,

relatively, easy way. [24]

4) Non-linear complex mappings generation

The most important part of the fractals is represented by

fractals in which relation between input and output (Fig.5) is

non-linear, using complex variables and parameters. Two

examples of fractals included in this class are: Mandelbrot and

Julia sets. [24]

 nn zFz 1 (6)

igfF  (7)

From (6) and (7), using decomposition the complex

mapping into real and imaginary part:

 

 











nnn

nnn

yxgy

yxfx

,

,

1

1
 (8)

For each point in the complex field it can be determined

how many iterations are needed until a point escapes to other

points of attraction or towards infinity. For both cases,

stopping criteria are formulated and for each mapping, it is

possible to count how many iterations are necessary until one

or more of these criteria are reached. The number iterations is

used as an argument for color function. [24]

II. RELATED PROJECTS

The most used software programs that use concepts adjacent

to this project are: Acropora, Terragen and BRL-CAD.

A. Acropora

Acropora is a procedural modeling program that combines

volumetric modifiers with sampling of 3D noise of multiple

octaves, to generate detailed surfaces in much less time than

conventional modeling surfaces software can. Acropora adopts

a less deterministic approach to generate complex and organic

shapes by applying sequences of modifiers on large voxelized

meshes.

The result is an infinite and continuous surface that curls

and changes in a natural way. Resulted meshes contain caves,

ridges, bumps and other natural features that cannot be created

with height maps. [4]

Meshes generated in Acropora can be further divided into

multiple segments, which can in turn be further subdivided

into different levels of detail.

1) How it works

A mesh generation begins with a basic geometry and it

combines the complex noise sampling with the user-specified

form modifiers to generate a single field density, which is then

marked to generate a surface that becomes the final mesh.

After the isosurface is extracted, then the user can level,

optimize or filter the resulting mesh. Evaluation of the density

function is numerically intensive, therefore, the volume is

often broken into blocks. However, mesh-sized operations can

be performed globally on the entire mesh or on the selected

blocks. Acropora automatically takes care of alignment,

ensuring a joint line between the adjacent mesh sites.

GPU support offers real-time response when editing

volumes. In addition to applying the global modifiers, the user

can create localized regions or volumes, which work in tandem

or independently of other regions.

Acropora can also be used to test and develop procedural

surfaces that later can be used for generating meshes in

hardware. [4]

2) Semi-deterministic approach

Math-Modeling of voxels is by its nature a non-precision

approach to sculpting surfaces. While 3D models can be

sampled by voxels, Acropora renders complex surfaces that

are difficult to render using conventional modeling.

The complex surfaces that can be rendered in Acropora are

caves, complex organic shapes, and realistic clusters of rocks,

projections and canyons. The user can control the intensity and

quality of the surface structures.

B. Terragen

Terragen is a program for Microsoft Windows and Mac OS

X, developed and published by Planetside Software, which

generates landscapes. It can be used to create renderings and

animations of landscapes. [5]

Terragen is a designing and rendering software for

photorealistic 3D environments. It is widely used in a broad

spectrum of industries from visual effects to games or art. [5]

1) Overview

Terragen is popular among amateur artists, because it has a

simple freeware version with an intuitive interface and it is

able to create photorealistic landscapes. It can also use DEM

Fig. 6 Generating a noise spiral in Acropora (2015) [4]

files and other surface maps for rendering.

The commercial version of the software available is able to

create larger fields, renderings with higher resolutions, use

larger terrain files and use a better anti-aliasing algorithm.

The terrain, clouds and objects are constructed from two

dimensional height maps that are procedurally generated.

Terragen is not a game engine, it uses algorithms that

simulate skies, outdoor lighting, and terrain textures, being

also capable of rendering very large and very detailed terrains.

[5]

C. BRL-CAD

BRL-CAD is a powerful modeling combinatorial system,

which is cross-platform and open source. It includes

interactive 3D geometry editing, ray-tracing support for high

quality rendering and geometric analysis, support for network

distributed framebuffers, tools for image and signal

processing, path-tracing support and photon mapping for

realistic image synthesis, a suite of performance evaluation and

analysis systems, embedded scripting interface libraries for

robust geometric representation and high performance

analysis.

For more than two decades, BRL-CAD was a solid

modeling CAD system used primary for the US military to

model weapons systems for vulnerability analysis and lethality

[6]. This package was also used in the planning of radiation

doses, medical views, computer graphics education, CSG

concepts and modeling education, performance evaluation

tests of systems and many other purposes. Today the solid

modeling system is often used in a wide range of applications,

from academic to industrial and military, including the design

and analysis of vehicles and mechanical parts.

BRL-CAD supports a wide variety of geometric

representations including an extensive set of traditional CSG

primitive solids such as boxes, ellipses, cones and tori, as well

as explicit solids made from closed collections of B-Spline

uniform surfaces, non-uniform rational B-Spline, n-Manifold

geometry and mesh geometry.

All geometric objects that are obtained in BRL-CAD can

then be combined using Boolean CSG operations, including

unions, intersections and differences. [6]

III. ALGORITHMS

After presenting the fundamental theory and existing

applications, the paper will now go into more detail and

present ways for building objects like water waves, lands with

mountains, clouds, vegetation, soil with sand or rocks and land

textures, generated mathematically. [7]

A. Generation of water

To generate water waves there are several algorithms. The

main types of waves used are sine waves, Gerstner waves and

FFT waves. There are also algorithms for generating turbulent

waves, algorithms for generating waves for shallow water and

algorithms for generating movement of incompressible viscous

fluids using the Navier Stokes equations.

Everything can be calculated mathematically, including

water color and its reflection and refraction.

There are also developed algorithms for generating caustic

and foam, water drops and bubbles, using systems of particles.

[7]

1) Sine Waves

Sine waves are calculated using sums of sines, which are

continuous functions that describes the height and orientation

of the water surface at all points of the plane.

The height of each wave according to the horizontal

position (x,y) and time t is defined as:

    iiiii twyxDAtyxW  ,sin,, (9)

where:

iA is the amplitude,

iD is the direction, the horizontal vector that is perpendicular

to the wave front which moves along the top of the wave,

iw is the frequency,

i is the phase constant and

  S , where S is the speed, also known as the distance

the wave travels at the top of a frame, and L/2  , where

L is the length of the wave, that is the distance between the

peaks of the waves.

For all  yx, in the horizontal plane 2D, the 3D position of

the sine waves surface is:

    tyxHyxtyxP ,,,,,,  (10)

where  tyxH ,, is the total area, and is defined as:

    tyxWtyxH i ,,,, . [7]

2) Gerstner waves

Unlike sine waves, which have a rounded appearance and

are suitable for calmer waters, Gerstner waves can control

steepness, thus sharp waves can be generated, making them

more suitable for rough waters.

For all in the horizontal plane 2D, the 3D position of

the Gerstner surface waves is:

Fig. 7 Gerstner Waves (2007) [7]

 
     

 
















 tyxH

y

tyxH
y

x

tyxH
xtyxP ,,,

,,'
,

,,'
,, (11)

where t is the time,

  
x

tyxH



 ,,'
 is the partial derivative of  tyxH ,,' in x

direction and is defined as:

  
    




tyxDwxDAQ

x

tyxH
iiiiii ,cos.

,,'

  
y

tyxH



 ,,'
 is a partial derivate of in

direction and is defined as:

  
    




tyxDwyDAQ

y

tyxH
iiiiii ,cos.

,,'

    ii wQtyxHtyxH /,,,,'  , , , , and

 are the same as in the case of sine waves.

In addition to the sine waves, Gerstner waves control the

inclination of the wave through the iQ parameter. If its value

is zero the obtained Gerstner waves are similar to sine waves.

Unlike sine waves, the Gerstner waves and points move

sideways and even if the overall wave height is the same,

Gerstner waves are more realistic because sharp waves can be

obtained. [7]

3) FFT waves

FFT waves are not based on any physical model, but they

are based on statistical models emerged from actual

observations of oceans and seas. These waves have been used

commercially several times, especially for movie animation

seas and oceans.

In statistical models and crafts, wave height is a random

variable, being a function of horizontal position and time. In

order to obtain FFT waves the wave height field is split into a

set of sine waves with different amplitudes and phases, after

which inverse FFT transform is used to rapidly assess the

amount obtained. [7]

4) Agitated waves

The FFT algorithm for generating waves produces waves

that have rounded edges, suggesting calmer weather. To get

restless waves, with sharper peaks and flatted bases, instead of

directly modifying the height field, the positions of the points

need to be moved horizontally.

FFT waves are an alternative for sine waves, while the

restless waves are an alternative Gerstner waves, and although

the algorithms to generate the waves are different, the results

are similar. [7]

Another method to simulate agitated water is by using Perlin

noise. The advantage of scalability makes Perlin noise the

most suitable option to simulate very wide surfaces. (Fig. 8)

5) Waves for shallow waters

For shallow water, waves are generated with the Saint

Venant equations that are partial hyperbolic differential

equations which describe the flow of a fluid underneath a

surface of pressure. [7]

6) Fluid Movement

Incompressible viscous fluid motion is described entirely by

the Navier Stokes equations. In these equations there are three

types of forces that act: body forces, pressure and viscous

forces.

Body forces are the forces acting on the entire surface of the

water. It is generally assumed that these forces are formed only

from gravity. Pressure forces act upon the inside of the fluid

and upon the surface normal, and the forces due to friction of

the water are the viscous forces and they act in all directions

over the entire surface of the water. [8]

7) Water Color

The color of the water is generally given by the reflection

and refraction, but the water may also have a color which

depends on the direction of the incident light beam, the

direction of viewing and the properties of the water. [8]

8) Reflection and refraction of water

Most visual effects of the water are caused by the reflection

and refraction. This occurs when a ray strikes the surface of

the water, and part of it is reflected back into the atmosphere

and the other part is refracted in the volume of water.

One of the most important visual aspects of realistic

rendering of water is obtained through the Fresnel equation

Fig. 9 Ocean with Gerstner waves, reflection and refraction by

Jerry Tessendorf (2005) [8]

Fig. 8 Perlin noise water

which defines a factor of combination between reflection and

refraction. [8]

Fig. 9 presents the current state of the project that includes

Gerstner wave generated water, and water color formed by

reflection and refraction.

9) Caustics

Caustics result from reflected or refracted light rays on a

curved surface and therefore they focus only in certain areas of

the receiving surface. They can be generated “fractally” or

mathematically. [9]

10) Foam, drops and water bubbles

When the water surface is very agitated or when it

encounters obstacles it generates foam, water drops and

bubbles due to breaking waves. This can be achieved by means

of a system of particles that will be based on Newtonian

dynamics. [9]

11) Generation of rivers

The classical method for generating rivers is a part of

height-map generation algorithm. The algorithm generates a

terrain model around a precomputed set of ridge lines and

rivers network. First, a rapid method that generates the ridges

and rivers network is used. Then, an extension of the basic

midpoint displacement method is applied for generating fractal

terrain model around a pre-filled ridges and rivers network.

[18]

In Fig.10, the left image shows: in black color the computed

elevations and in the white color the elevations that still have

to be computed. In the right image, in black/gray color, the

tridimensional view of D.E.M is represented, in red, the

elevations computed with the M.D.I. process and in white, the

elevations that still have to be computed. [18]

The second approach is a post-processing step on the

existing height-map. For the first one, a generated river

network forms a basis from which a height-map is inferred.

For the last one, a height-map is analyzed to find the potential

stream routes from mountains into valleys. [15]

12) Generation of oceans and lakes

Procedural water bodies, such as oceans and lakes and their

connections, stream networks, deltas and waterfalls are

similarly generated. Oceans are commonly generated by

setting a fixed water level and, for lakes, the classical method

is a flooding algorithm from points of low elevation. [15]

B. Generation of land

For the generation of fields with mountains there are

multiple algorithms. [10]

1) Transcendental land

Transcendental lands are lands mathematically calculated

using sine and cosine functions. Transcendental lands have a

rounded appearance and relate to sine waves resembling water.

[10]

2) Fractal land

Fractal terrains are more realistic than the transcendental

terrains, due to the sharp mountain peaks. These fields can be

generated using several algorithms, among which the most

important are the median shift algorithm, Diamond-Square

algorithm and FFT. [10]

3) Median shift algorithm

Median shift algorithm provides realistic results. This

algorithm assumes that the start is a line between two points,

then the median of that line is moved with a random value in

the vertical direction, then the medians of the two new

segments are moved with random values in the vertical

direction and then the previous step is repeated until the

desired level of detail is reached. [11]

4) Diamond-Square algorithm

Fig. 11 Fractal terrain generation using Diamond-Square algorithm

by David P. Feldman (2012) [11]

Fig. 10 The Midpoint Displacement's Inverse process by F. Belhadj

(2005) [18]

The Diamond-Square algorithm generates more realistic

terrain than the previous algorithm, because the latter one

leaves square objects in the field. The Diamond-Square

algorithm mitigates this by alternating calculated values of the

middle points of squares and diamonds. This algorithm

assumes the start by assigning a random height of the four

corners of the grid, and then averaging four corners, plus a

random disturbance and assigns this value to the middle point

of the square formed by four points. Then it takes each

achieved diamond, it calculates the average of the four corners

of each diamond, plus a random disturbance and assigns the

middle point of the diamond. The previous two steps are then

repeated until reaching the desired level of detail. [11]

Fig.11 shows the generation of a fractal terrain using

Diamond-Square algorithm, from the initial stages of low level

detail in the final stages with high level of detail. [11]

5) Improved Diamond-Square Algorithm

In order to accelerate the process of generating terrain, it is

used an improved algorithm. The goal of both algorithms is to

construct a bidimensional heightmap. In the standard algorithm

the 2D array is a square (Fig 12.a). The mid-point value is the

average of the angles plus a random value, which is reduced

over the steps.

The standard algorithm divides the square into four triangles

(Fig 12.b). In addition, the improved algorithm draws two

lines between the mid-point and the mid-points of hypotenuses

of the triangles, dividing each triangle into two small triangles.

(Fig 12.c) [25]

6) FFT algorithm

Unlike the movement of the median algorithm and

Diamond-Square algorithm which have linear running time,

the FFT algorithm’s runtime is logarithmic.

Another difference of the FFT algorithm is that the terrain

has a more rounded texture and has no raised or pointed peaks.

[12]

At distance either less frequencies can be considered, or the

terrain simplified for speed purposes. [14]

7) Erosion fractal

The height-maps can be transformed using simulations of

physical phenomena, such as erosion. In order to diminish the

sharp changes in elevation, thermal erosion is used, by

iteratively distributing material from higher to lower points,

until the maximum angle of stability for a material is reached.

Another type of erosion is caused by rainfall or fluvial

erosion. This type can be simulated using cellular automaton

(model of a system of “cell” objects), where dissolved material

that flows out to other cells and the amount of water are

calculated based on the local slope of the elevation profile.

[15]

8) Digital elevation models (DEM) method

Besides other methods, this setup allows the user to

interactively edit the height-map. A user draws a 2D map of

polygonal regions, each of which is marked to have a certain

elevation profile. The straight boundaries of the regions are

perturbed and rasterized in a grid. Then, for each region, DEM

data is selected to match the requested elevation profile. The

selection of data is realized using genetic algorithms.

The main advantages of this method are: realism,

extensibility and ease of use (intuitive control, with low input

requirements). However, the generated transitions at the

boundaries between regions are still rather abrupt. [16]

C. Cloud Generation

To generate clouds, noise functions are used in general. The

noise that offers the most realistic results is the Perlin noise.

Meteorological phenomena, such as lightning, can be

mathematically generated or through fractals. Rain and snow,

can be generated using a particle system. [7]

Another method to generate a cloud data model is based on

the random displacement algorithm. The process is similar to

the generated terrain. The main difference is that we need a

height map where vertexes have different colors and not

different heights.

To accomplish this, there is an additional final step in which

the heights are mapped to colors. Firstly, the basic clouds are

generated through the Diamond-Square algorithm. Based on

the height map, we figure out the minimum and maximum

height. These two values determine the mapping interval for

heights to color interval. [25]

1) Noise functions

The role of noise functions is to provide a pseudo-random

signal, efficiently implemented and repeatable over a three-

dimensional space. In general, the sound functions receive an

integer as a seed and they return a pseudo random number

based on the received parameter. [7]

2) Perlin Noise

To create a Perlin noise function, a noise and an

interpolation function are required. The noise function must

be, in general, a random number generator that will return the

same value if two numbers with the same value are sent as

input and different values if two different values are sent as a

parameter.

A standard interpolation function receives three parameters,

two of which represent the values between the return value that

must be interpolated and the third parameter based on which

the returned value is interpolated. [13]

D. Generation of vegetation

Vegetation can also be generated with fractals or

mathematically. Procedural vegetation is a classic research

topic in the field of procedural modelling and includes both

procedures for generating 3D plant models and trees and

specific methods for placement on a given surface. [7]

1) Generating plants

There are many plants that can be generated by fractals or

mathematically, including ferns, grass, flowers, fruits,

vegetables or leaves. Plants can be generated using L-systems

Fig. 12 The improved Diamond-Square algorithm [25]

or using iterated function systems. [7]

Branching patterns may be defined as L-systems by using K

denoted by <G, W, P>, in which G is a set of symbols, W is

the starting string and P is the production rule.

Monopodial branching, in which the growth of the main axis

continues throughout the plant’s life, may be represented by

the following L-system [24]:

PMWMGKM ,, (12)

 ][,,1,0G (13)

0WM (14)

 ]][,[,11,0]0[10 PM (15)

<Iteration> <Generated String>

1: 0

2: 1[0]0

3: 1[1[0]0]1[0]0

4: 1[1[1[0]1]1[0]0]1[1[0]0]1[0]0

The drawing rule showed in Fig.13 is one possible way to

visualize the generated string.

An alternative system to procedurally model plants is by

placing plant components in a graph. Connected components

can be structured in sub-graphs. The system traverses this

graph, generating and placing instances of the components in

an intermediate graph that is used for geometry generation.

A set of components is connected by the user to describe the

structure of the plant. The algorithms are controlled by

graphical user interface on the basis of spline functions. [17]

2) Generation of trees

Trees can be generated using L-systems or iterated function

systems. An L-system is a classical and often used example of

a rewriting system. Although the L-systems are used for

rewriting strings of text, the resulting set of symbols can be

interpreted in 2D and 3D. One of the best known such tree is

the tree of Pythagoras, which is built recursively. [7]

The L-system has an advantage in describing the random

growth of leaves, flowers, fruits, freely and easily, but it is not

suitable for textures, which also have self-similarity. In order

to solve this problem, the iterated function system (IFS) is

used. The main advantage of the IFS is that the graph is a

colored map, texture mapping being realized easily. On the

other hand, the plants are very similar. A combination of these

two methods gives the best results.

The leaves are simulated via IFS and the branches are

generated via L-systems. The idea of these two methods is to

generate the tree using L-systems that control the IFS’s code

parameters. The most important advantages are:

implementation is easy, trees look realistic and the shape detail

of the leaf is more attractive. [27]

Without any random affection, the tree seems too stiff and

similar. Trees are affected by the wind and gravity and in order

to create more natural trees, random functions are used. The

random values are used to disturb the branch’s dip angle,

length and size. Fig 14 (a) depicts a tree without any random

values and Fig 14 (b) a tree generated by L-systems controlling

IFS’s code parameters, but with added randomness.

3) Vegetation distribution

Vegetation distribution is provided by two approaches:

explicit specification and procedural generation. The first one

is obtained by surveying a forest or specified by the user. The

second is realized using a point pattern generation model or an

individual-based population model. Both methods use detailed

information in order to construct an ecosystem.

The problem is that these methods could not offer a suitable

option for small areas.

Because random selection does not offer a natural

distribution, we came up with a method, inspired from genetic

algorithms, more precisely, the roulette selection.

Roulette selection is a method to pick the most suitable

parents that are used to create the next generation. Each parent

has assigned a selection probability based on a fitness value. A

fitness function is an objective function which describes the

figure of merit, how close the solution to achieve a set of goals

is.

In our case, we just need to decide what species is assigned

to a tree. Firstly, a sample from each species is planted. In

order to avoid plantation of seeds in water or in undesirable

places, previous checks are required. After this step, for each

element we want to plant, we need to decide which species is

the closest, by calculating the Euclidian distance, or any other

distance, between the element and other trees that are already

planted.

The fitness is inversely proportional to the minimum

distance. We want a higher fitness values for the closest

species. For fitness function, we selected the function:

n

xdist
xfitness 










)(

1
)(

,

where x is the species and).,1[n

Fig. 14 Trees generated by L-system controlling IFS code’s

parameters: (a) without random (b) with random

Fig. 13 Drawing rule for the string 1[0]0, shape A and B by N.

Mukaia [24]

In small regions n must be lower, because the minimum

distances are similar and the entire ecosystem looks random

(Fig 15-a). When the n value becomes lower, the entire

distribution tends to concentrate in clusters.

On the other hand, a very organized ecosystem like in Fig

15-d does not look natural, either. In conclusion, the n value

must be chosen in correspondence with the dimensions of the

region, for natural results.

After the fitness for each species is computed, we need to

calculate the selection probability for each species. The

function used for calculating the probability is:





n

i

i

k
k

xfitness

xfitness
xP

1

)(

)(
)(

,

where n is is the number of species and kx is the species for

which the selection probability is calculated.

Because the sum of all probabilities is equal to 1, in the final

step we distribute the probability ranges in the subunit interval

[0, 1]. After we have the interval, we need a random

subunitary number, based on which the selected species is

decided.

This method is the most suitable when we have small

regions with no detailed information about the ecosystem or it

is impossible to apply altitudinal vegetation zones.

E. Soil generation

The most important elements of this category that can be

generated are rocks and sand. Sand dunes using noise

functions can also be generated. [7]

A. Peytavie1 and E. Gali came up with a complex

framework to simulate the material layers. A terrain is defined

as two dimensional grid of material stacks. (Fig. 16)

A material stack contains different material layers that are

characterized by their thickness and the corresponding material

type. The types of material implemented in the framework are:

air, water, sand, bedrock and rocks.

Rocks are created using Voronoi cells. The first step is to

generate a cubic tile containing these cells and the next step is

the erosion. The process of erosion is realized at some random

contact points so that the rocks should nicely pack together.

The rock instantiation is realized based on the material

layer. The instantiated rocks like their Voronoi center within a

Fig. 16 Material stacks[28]

(a) n=-1

(b) n=-2

(c) n=-4

(d) n=-6

Fig. 15 Vegetation distribution

rock material layer [28]

The elimination of small rocks that are not visible is a

method of optimization. Therefore, all rocks whose distance to

the surface is larger than twice the maximum radius of

Voronoi embedding spheres are eliminated.

Another important aspect of soil generation is the addition

of granular material. The approach is a three dimensional

generalization of painting tools for editing height fields. [28]

As we can see in Fig. 18, a brush is characterized by a

depositing region and the distribution material. This method

enables the user to control the amount and the location of

granular material.

F. Urban environments

The common approach for procedurally generating cities is

to start from a dense road network and identify the polygonal

regions enclosed by streets. Building lots are the result of

subdivision of these regions. Then, for populating these lots,

the lot shape is used directly as the footprint of a building

(Fig.19).

Another method is to fit the building footprint on the lot. By

simply extruding the footprint to a random height, a city of

skyscrapers and office buildings can be generated. These

approaches are used to create a macro environment; for more

complex details, several rule-based methods are necessary.

[15]

G. Generation of microorganisms

One direction of application of fractals in biology is to

artificially create biological objects or systems. A new concept

of Mandelbrot was demonstrated by C.A. Pickover by coloring

the created images closely corresponding to single cellular

organisms. These organisms can be seen in Fig 20, and they

are also named biomorphs. [26]

H. Generation of textures

Textures can be generated using height maps obtained at the

terrain generation. [7] Another method is used for generating

texture image such as surfaces of houses or roads. For this,

random or fractal functions are used. This method uses two

types of images. One is a material image and the other is a

weathered one. The material image is generated by placing

some fundamental patterns at random. The more patterns are

used, the more varieties are generated. On the other hand, the

weathered image is generated using fractal functions.

Intended images, such as a texture that represents a water

drop track on the wall, can be realized by selecting the fractal

seeds. Also, combining both material and weathered images

can make more realistic images for texture mapping. The

generated images look very natural and enable the very

realistic data modelling of landscape simulation. [24]

Another method for texture generation is using Perlin noise.

Because one of the most important advantages is the

scalability, Perlin noise is suitable for texturing large regions

of terrain.

Fig. 21 Large-scale Perlin noise for normal map distortion

Fig. 20 Examples of cellular organisms created using fractals [26]

Fig. 19 Procedural sketching session: a) river flowing towards the

sea, b) road feature crossing the river, c) city created along the river

banks by R.M. Smelik (2011) [15]

Fig. 18 Granular material on initial bedrock layer [28]

Fig. 17 Rock instantiation process [28]

In Fig. 21, Perlin noise was generated at a very large scale

to simulate grass, using normal map distortion.

The same function, generated at a small scale was used to

simulate different levels of aridity, by changing the base color

as in Fig. 22.

I. Generation of other elements

The most important of these elements are animals such as

spiders, snails, peacocks, sea urchins and starfish, but the

generation of stalagmites and stalactites and crystals is also

possible. [7]

IV. CONCLUSIONS

This paper presented techniques to generate many classes of

objects on the basis of equations, possibly with minimal data,

such as a seed. Items that can be randomly generated include:

terrain, terrain textures, terrain elements (sand, rocks), clouds,

vegetation, soil and water. All the aforementioned generation

techniques were included in “A Fractal World” project

designed by the authors to prove that simple mathematical

techniques may be employed to generate realistically

environments from virtually no data and randomly evolving

starting from a seed and running up to a custom level of detail.

The project was designed with educational purpose in mind,

carrying the strong desire that in the end it will enclose almost

all the important ideas in the fractal world generator and also it

will allow students to customize the techniques, tweak the

algorithms for even more realism and perform optimizations

for better viewing performance. “A Fractal World” [29] aims

at generating “fully-mathematical” planets using a

configurable amount of detail and computing power and to

serve as a powerful educational tool for computer graphics

students to integrate their knowledge and original ideas.

ACKNOWLEDGMENT

The authors want to thank Iacob Stefan Octavian and Mihai

Zaharescu for their help with text management and corrections.

REFERENCES

[1] B. Mandelbrot, The Fractalist: Memoir of a Scientific Maverick, Knopf

Doubleday Publishing Group, 2012.

[2] L. F. Richardson, O. M. Ashford, P. G. Drazin, The Collected Papers of

Lewis Fry Richardson, Cambridge University Press, 2009

[3] NOVA, Hunting the Hidden Dimension, PBS, 2008

[4] http:// www.voxelogic.com/ , ”Welcome to the Voxelogic”, Accessed

on: 2/1/2015

[5] http:// planetside.co.uk/ , ”Terragen 3”, Accessed on: 2/1/2015

[6] http:// brlcad.org/ , ”BRL-CAD | Open Source Solid Modeling”,

Accessed on: 2/1/2015

[7] NVIDIA, GPU Gems, NVIDIA Corporation, 2007

[8] J. Tessendorf, Simulating Ocean Water, 2005

[9] Y. Hu, L. Velho, X. Tong, B. Guo, H. Shum, Realistic, Real–Time

Rendering of Ocean Waves, 2015

[10] K. Bird, T. Dickerson, J. George, Techniques for Fractal Terrain

Generation, HRUMC, 2013

[11] D. P. Feldman, Chaos and Fractals: An Elementary Introduction,

Oxford University Press, 2012

[12] M. F. Worboys, M. Duckham, GIS: A Computing Perspective, Second

Edition, CRC Press, 2004

[13] D. S. Ebert, Texturing & Modeling: A Procedural Approach, 2003

[14] C. A. Boiangiu, B. Raducanu. “3D Mesh Simplification Techniques for

Image-Page Clusters Detection”. WSEAS Transactions on Information

Science, Applications, Issue 7, Volume 5, pp. 1200 – 1209, July 2008

[15] R.M. Smelik. “A Declarative Approach to Procedural Generation of

Virtual Worlds” , 30 november 2011

[16] [16] R. L. Saunders. “Terrainosaurus: Realistic Terrain Synthesis

Using Genetic Algorithms”, December 2006

[17] O. Deussen, C. Colditz, L. Cocunu, H.C. Hege. “Efficient modelling

and rendering of synthetic landscapes”

[18] F. Belhadj, P. Audibert. “Modeling Landscapes with Ridges and

Rivers”, November 2005

[19] https:// classes.yale.edu/ fractals/ IntroToFrac/ SelfSim/ SelfSim.html,

“Self-Similarity”, Accessed on: 2/1/2015

[20] L. Strudwick. “Infinite Space and Self-Similar Form in Alchemy and

Fractal Geometry”

[21] A. Shamsgovara. “Analytic and Numerical Calculations of Fractal

Dimensions”. Research Academy for Young Scientists, July 11, 2012

[22] M. M. Ibrahim and R. J. Krawczyk. “Generating Fractals Based on

Spatial Organizations”. College of Architecture, Chicago, IL USA

[23] M.M. de Ruiter (Ed.). “Advance in Computer Graphics III”.

EurographicSeminars

[24] N. Mukaia, Y. Sakaguchia, M. Kosugia. “A Method for Generating

Texture Images used on Landscape Simulation”. Electronic &

Computer Engineering, Musashi Institute of Technology, Tokyo, Japan

[25] D. Fang. “The Study of Terrain Simulation Based on Fractal”. WSEAS

Transactions on Computers. College of Computer and Information

Zhejing Wanli University, Ningbo, 315100

[26] R. Jovanovic, M. Tuba. “A Visual Αnalysis of Calculation-Paths of the

Mandelbrot Set”. WSEAS Transactions on Computers. Institute of

Physics, Belgrade, Pregrevica 118, Zemun, Serbia. Faculty of Computer

Science, Megatrend University of Belgrade, Bulevar umetnosti 29, N.

Belgrad, Serbia.

[27] D. Fang, Xi Li-Fneg. “An Application of L-system and IFS in 3D

Fractal Simulation”. WSEAS Transactions on Systems. College of

Computer and Information, Zhejing Wanli, University Ningbo, China.

[28] A. Peytavie, E. Galin, J. Grosjean, S. Merillou. “Arches: a Framework

for Modeling Complex Terrains”. EUROGRAPHICS 2009 / P. Dutré

and M. Stamminger. LIRIS - CNRS - Université Claude Bernard Lyon

1, France.

[29] C. A. Boiangiu, A. G. Morosan, M. Stan, “Fractal Objects in Computer

Graphics”, Proceedings of the 6th International Conference on Applied

Informatics and Computing Theory (AICT '15), Salerno, Italy, June 27-

29, 2015, WSEAS Press, pp. 123-131.

Fig. 22 Small-scale Perlin noise for levels of aridity

