	Lecture 3	
	The Stack. Buffer Management	
	Computer and Network Security	
	October 14, 2019 Computer Science and Engineering Department	
CSE Dep. ACS, UPB	Licture 3, The Stuck. Buffer Management 1/41	
CSE Utip, ACS, UPB	LELEN 2, I IN 2122. HENRY HEREBUSHEN 1/22	
CNSÒ	Runtime/Dynamic Analysis	
		Notes
 inspect processes inspect resources 	: file, sockets, IPC (Isof, netstat, ss)	
inspect memory:	pmap, GDB	
inspect calls: strathorough inspect	ace, Itrace ion: in debuggers (GDB, Immunity, OllyDbg)	
CSE Dep. ACS, UPB	Lecture 3, The Stack. Buffer Management 3/41	
cns 	Runtime Application Security	
<u> </u>	Runtime Application Security	Notes
	Runtime Application Security	Notes
 attack vulnerabili 	Runtime Application Security	Notes
 attack vulnerabili attacker aims get a shell 	ities in process address space and process flow	Notes
 attack vulnerabili attacker aims get a shell privilege esca information le 	ities in process address space and process flow lation eak	Notes
 attack vulnerabili attacker aims get a shell privilege escal information le denial of serv defender: harden 	ities in process address space and process flow lation eak ice ing process and runtime environment	Notes
 attack vulnerabili attacker aims get a shell privilege escal information le denial of serv defender: harden 	ities in process address space and process flow lation eak ice	Notes
 attack vulnerabili attacker aims get a shell privilege escal information le denial of serv defender: harden 	ities in process address space and process flow lation eak ice ing process and runtime environment	Notes
 attack vulnerabili attacker aims get a shell privilege escal information le denial of serv defender: harden 	ities in process address space and process flow lation eak ice ing process and runtime environment	Notes
 attack vulnerabili attacker aims get a shell privilege escal information le denial of serv defender: harden 	ities in process address space and process flow lation eak ice ing process and runtime environment	Notes
 attack vulnerabili attacker aims get a shell privilege esca information le denial of serv defender: harden (libraries, permiss) 	ities in process address space and process flow lation eak ice ing process and runtime environment sions, sandboxing, monitoring)	Notes
 attack vulnerabili attacker aims get a shell privilege esca information le denial of serv defender: harden (libraries, permiss) 	ities in process address space and process flow lation eak ice ing process and runtime environment sions, sandboxing, monitoring)	Notes
 attack vulnerabili attacker aims get a shell privilege escai information le denial of serv defender: harden (libraries, permiss 	ities in process address space and process flow lation eak ice ing process and runtime environment sions, sandboxing, monitoring)	
 attack vulnerabili attacker aims get a shell privilege escai information le denial of serv defender: harden (libraries, permiss 	ties in process address space and process flow lation eak ice ing process and runtime environment sions, sandboxing, monitoring) terr 1. The Stark. Buffer Management 242	
 attack vulnerabili attacker aims get a shell privilege esca information le denial of serv defender: harden (libraries, permiss 	ties in process address space and process flow lation eak ice ing process and runtime environment sions, sandboxing, monitoring) terrer 1. The Stack Refer Management management	
 attack vulnerabili attacker aims get a shell privilege esca information le denial of serv defender: harden (libraries, permiss) 	ties in process address space and process flow lation eak ice ing process and runtime environment sions, sandboxing, monitoring) terre 2. The State Bulle Measurest v24 Knowledge and Skills Required	
 attack vulnerabili attacker aims get a shell privilege esca information le denial of serv defender: harden (libraries, permiss 	Ities in process address space and process flow lation eak ice ing process and runtime environment sions, sandboxing, monitoring) teter 1. The State. Buffer Messgeneet Knowledge and Skills Required	

- platform ISA
- good skills working with a debugger

(3	ł	٧	S	i	2	2
0	т	E	~		n	è.	ъ

Notes

Notes

Notes

- memory address space of a process
- ► linear
- memory areas, responsibilities
- ► static/dynamic allocation
- memory mapping
- access rights

CSE Dep, ACS, UPB

CNSÒ

Text

- ► stores code
- $\blacktriangleright\,$ read only and executable
- instruction pointer/program counter points to current instruction

Lecture 3, The Stack. Buffer Manager

- libraries posses code segment
- instruction pointer may jump to library code

CNSÒ

Data

- stores data (global variables)
- .data, .bss, .rodata
- read-write, .rodata is read-only
- accessed through normal registers (eax, ebx, ecx, edx)

CSE Dep, ACS, UPB

3, The Stack. Buffer Management

CNSÒ

Heap

dyanamic memory allocation

- malloc and friends
- linked list implementation in the backend
- ▶ pointer madness
- memory leaks
- read-write

store function call frames	
function arguments and local variables	
 stack pointer, frame pointer read-write 	
► read-write	
CSE Dep. ACS, UPB Lecture 3, The Stack. Buffer Management 11/41	
Generic Stack Operations	Notes
push: push new element on stack	
pop: pop element on stack, return null if no element on	
stack	
top/peek: show last element on stack	
can only push to top and pop from top of the stack	
CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 13/41	
CNS The Stack in the Process Address Space	
CNSO The Stack in the Process Address Space	Notes
▶ it's bottom up in x86 architecture	
 base address points to bottom of the stack 	
 stack pointer points to top of the stack 	
▶ stack pointer <= base address	
stack size = base_address - stack pointer	
► stack "grows down"	
when stack grows, stack pointer decreases in value	
when stack decreases, stack pointer increases in value	
CSE Dep. ACS, UPB Lecture 3, The Stack. Buffer Management 14/41	
CNSO Push/Pop	Notes
push operation adds data to stack: stack grows, stack pointer	
decreases	
push is equivalent to	
▶ sub \$4, %esp ▶ mov value, (%esp)	
pop operation removes data from stack: stack decreases,	
stack pointer increases	
push is equivalent to	
<pre>mov (%esp), value add \$4 %orp</pre>	
▶ add \$4, %esp	

15/41

Lecture 3, The Stack. Buffer Management

CSE Dep, ACS, UPB

Stack Frame

- push function arguments, stack pointer decreases, the stack grows
- issue call new-function-address
 - save/push instruction pointer on stack (stack grows, stack pointer decreases
 jump to new-function-address
- save/push old frame pointer
- save current stack pointer in frame pointer register
- save registers
- make room on stack (stack grows, stack pointer decreases)

(C	1	٧	S	ç	2	2

Notes

Notes

CNSÒ	What	t is a Buffer?
SE Dep, ACS, UPB	Lecture 3, The Stack. Buller Management	20/41
discard stac	< in caller frame	
 restore fram 		
decrease	nstruction pointer from top of the stack (st is, stack pointer increases) e execution from previous point	ack
issue ret		
restore/pop	old frame pointer	
 restore/pop 	registers	
discard stac	< (stack decreases, stack pointer increas	es)

- an array of bytes for storing temporary data
- generally dynamic (its contents change during runtime)
- ► frequent access: read-write
- base address, data type, number of elements
- buffer size = number of elements * sizeof(data type)

Why Buffers?

store data during runtime

pass data between functions (arguments or return values)

CSE Dep, ACS, UPB

Lecture 3, The Stack. Buffer Manager

CNSÒ

On Memory Allocation

- static allocation: at compile time (in data or bss)
- dynamic allocation: at runtime (malloc, on heap)
- automatic allocation: on the stack, during runtime, usually fixed size
- in case of dynamic allocation, the pointer variable is stored on the stack and the actual buffer data is stored on the heap
- $\blacktriangleright\,$ allocation granularity is the page at OS/hardware-level

(3	1	٧	S	(2	7
0	т	E	~		n	è.	5

Arrays vs. Pointers

 int buffer[10]; - array int *buffer; - pointer array occupies sizeof(buffer) pointer occupies sizeof(int *) + size_of_buffer an array is like a label a pointer is a variable 	
CSE Dap, ACS, UPB Lacture 3, The Stack. Buffer Management 25/41	
Problems with Buffers	Notes
Normal have to been their breath	
 you have to know their length buffer overflow you have to be careful about the index 	
 index out of bounds buffer overflow negative index 	
negative index	
CSE Dap, ACS, UPB Lactore 3, The Stack. Buffer Management 20/41	
CNSO Buffer Overflow	Notes
 write data continuously in buffer (strcpy-like) pass buffer boundary and overwrite data 	
 may be exploited by writing function pointers, return address or function pointers allocations is page level, so overflow won't trigger exceptions 	
 may be stack-based or heap-based 	
CSE Dop, ACS, UPB Lecture 3, The Stack. Buffer Management 27/41	
What if?	Notes
 not enough arguments for a function call too many arguments for a function call 	
 overflow of local buffers 	

Notes

Notes

►	stored	on	the	stack	to	allo	w	jump	bacl	ĸ

►	may be overwritten	and	allow	random	jumps	(the	stack	is
	read write)							

CNSÒ

Stack Overflow

Stack Buffer Overflow

▶ the stack overflows, goes into another memory zone

- may be the heap
- may be another stack in case of a multithreaded program

- overflow buffer on stack and rewrite something
- rewriting may be a local variable (number, function pointer) or return address of current stack frame
- if rewriting a function pointer jump to a conveniant address: address of buffer on stack, address of environment variable, address of function in libc

CSE Dep, ACS, U

CNSÒ

Lecture 3, The Stack. Buffer Managem

CNSÒ

Rewrite the Return Address with Address on Stack

- the usual way to exploit a stack buffer overflow (needs non-executable stack)
- do a stack buffer overflow and overwrite the return address (ebp+4)
- ovewrite with start address of buffer on the stack
- when function returns, jump to start address of buffer
- carefully place instructions to execute desired code at the beginning of the buffer (also dubbed shellcode)

Notes

Notes

►	buffer	may	be	placed	at	non-exact	address
---	--------	-----	----	--------	----	-----------	---------

- one solution is guessing the address
- the other is placing a sufficient number of NOP operations and jump to an address in the middle of the NOPs
- ▶ the program executes a set of NOPs and then reaches the actual shellcode

Lecture 3, The Stack. Buffer Manager

CSE Dep, ACS, UPB

CNSÒ

Shellcode

- > a sequence of instructions allowing the execution of an instruction similar to system("/bin/sh");
- usually provides a shell out of an average program
- may do some other actions (reading files, writing to files)
- ▶ the shell is a first step of an exploitation
- \blacktriangleright followed by an attempt to gain root access
- more on "Lecture 03: Exploiting"

CNSÒ

Return-to-libc Attack

- jump to a function call in the C library (such as system or exec)
- may be used in heap or data segments
- useful when stack is non-executable

CSE Dep, ACS, U

Lecture 3, The Stack. Buffer Manageme

CNSÒ

Demo

▶ the stack in shellcodes

level 5 from io.smashthestack.org

CSE Dep, ACS, UPB

Lecture 3, The Stack. Buffer Management

Notes

_

 address space stack push pop stack frame call stack stack trace 	 call ret buffer allocation buffer over return add NOP sled shellcode 			
CSE Dup, ACS, UPB	Lecture 3, The Stack. Buffer Management	30/41		
		Useful Links	Notes	
<pre>http://insecure http://www.cs.u Notes/Mips/stac http: //www.cs.vu.nl/</pre>	shing the Stack for Fun and e.org/stf/smashstack.ht umd.edu/class/sum2003/c ck.html /~herbertb/misc/bufferc .tue.nl/~aeb/linux/hh/h	ml msc311/ vverflow/		
<pre>http://insecure http://www.cs.u Notes/Mips/stac http: //www.cs.vu.nl/</pre>	e.org/stf/smashstack.ht umd.edu/class/sum2003/c ck.html /~herbertb/misc/bufferc	ml msc311/ vverflow/		
<pre>http://insecure http://www.cs.vu.nl Notes/Mips/stac http: //www.cs.vu.nl, http://www.win</pre>	e.org/stf/smashstack.ht umd.edu/class/sum2003/c ck.html /~herbertb/misc/bufferc	ml msc311/ vverflow/		
<pre>http://insecure http://www.cs.u Notes/Mips/stac http: //www.cs.vu.nl/</pre>	e.org/stf/smashstack.ht umd.edu/class/sum2003/c ck.html /~herbertb/misc/bufferc .tue.nl/~aeb/linux/hh/h	ml msc311/ overflow/ hh-10.html	 	

Notes

41/41