
Lecture 3
The Stack. Buffer Management

Computer and Network Security
October 14, 2019

Computer Science and Engineering Department

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 1/41

Lecture 3
The Stack. Buffer Management

Computer and Network Security
October 14, 2019

Computer Science and Engineering Department

2
0
1
9
-1
0
-1
4

Lecture 3

Outline

Runtime Application Security

The Process Address Space

The Stack

Buffer Management

Exploiting the Stack

Conclusion

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 2/41

Outline

Runtime Application Security

The Process Address Space

The Stack

Buffer Management

Exploiting the Stack

Conclusion2
0
1
9
-1
0
-1
4

Lecture 3
Runtime Application Security

Outline

Runtime/Dynamic Analysis

I inspect processes

I inspect resources: file, sockets, IPC (lsof, netstat, ss)

I inspect memory: pmap, GDB

I inspect calls: strace, ltrace

I thorough inspection: in debuggers (GDB, Immunity, OllyDbg)

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 3/41

Runtime/Dynamic Analysis

I inspect processes

I inspect resources: file, sockets, IPC (lsof, netstat, ss)

I inspect memory: pmap, GDB

I inspect calls: strace, ltrace

I thorough inspection: in debuggers (GDB, Immunity, OllyDbg)

2
0
1
9
-1
0
-1
4

Lecture 3
Runtime Application Security

Runtime/Dynamic Analysis

Runtime Application Security

I attack vulnerabilities in process address space and process flow
I attacker aims

I get a shell
I privilege escalation
I information leak
I denial of service

I defender: hardening process and runtime environment
(libraries, permissions, sandboxing, monitoring)

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 4/41

Runtime Application Security

I attack vulnerabilities in process address space and process flow
I attacker aims

I get a shell
I privilege escalation
I information leak
I denial of service

I defender: hardening process and runtime environment
(libraries, permissions, sandboxing, monitoring)

2
0
1
9
-1
0
-1
4

Lecture 3
Runtime Application Security

Runtime Application Security

Knowledge and Skills Required

I thread and process management

I (virtual) memory management

I intimate information on the process address space

I working with arrays and strings

I hex/binary

I assembly, dissasembling

I platform ISA

I good skills working with a debugger

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 5/41

Knowledge and Skills Required

I thread and process management

I (virtual) memory management

I intimate information on the process address space

I working with arrays and strings

I hex/binary

I assembly, dissasembling

I platform ISA

I good skills working with a debugger

2
0
1
9
-1
0
-1
4

Lecture 3
Runtime Application Security

Knowledge and Skills Required

Outline

Runtime Application Security

The Process Address Space

The Stack

Buffer Management

Exploiting the Stack

Conclusion

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 6/41

Outline

Runtime Application Security

The Process Address Space

The Stack

Buffer Management

Exploiting the Stack

Conclusion2
0
1
9
-1
0
-1
4

Lecture 3
The Process Address Space

Outline

Process Address Space

I memory address space of a process

I linear

I memory areas, responsibilities

I static/dynamic allocation

I memory mapping

I access rights

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 7/41

Process Address Space

I memory address space of a process

I linear

I memory areas, responsibilities

I static/dynamic allocation

I memory mapping

I access rights

2
0
1
9
-1
0
-1
4

Lecture 3
The Process Address Space

Process Address Space

Text

I stores code

I read only and executable

I instruction pointer/program counter points to current
instruction

I libraries posses code segment

I instruction pointer may jump to library code

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 8/41

Text

I stores code

I read only and executable

I instruction pointer/program counter points to current
instruction

I libraries posses code segment

I instruction pointer may jump to library code

2
0
1
9
-1
0
-1
4

Lecture 3
The Process Address Space

Text

Data

I stores data (global variables)

I .data, .bss, .rodata

I read-write, .rodata is read-only

I accessed through normal registers (eax, ebx, ecx, edx)

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 9/41

Data

I stores data (global variables)

I .data, .bss, .rodata

I read-write, .rodata is read-only

I accessed through normal registers (eax, ebx, ecx, edx)

2
0
1
9
-1
0
-1
4

Lecture 3
The Process Address Space

Data

Heap

I dyanamic memory allocation

I malloc and friends

I linked list implementation in the backend

I pointer madness

I memory leaks

I read-write

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 10/41

Heap

I dyanamic memory allocation

I malloc and friends

I linked list implementation in the backend

I pointer madness

I memory leaks

I read-write

2
0
1
9
-1
0
-1
4

Lecture 3
The Process Address Space

Heap

Stack

I store function call frames

I function arguments and local variables

I stack pointer, frame pointer

I read-write

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 11/41

Stack

I store function call frames

I function arguments and local variables

I stack pointer, frame pointer

I read-write

2
0
1
9
-1
0
-1
4

Lecture 3
The Process Address Space

Stack

Outline

Runtime Application Security

The Process Address Space

The Stack

Buffer Management

Exploiting the Stack

Conclusion

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 12/41

Outline

Runtime Application Security

The Process Address Space

The Stack

Buffer Management

Exploiting the Stack

Conclusion2
0
1
9
-1
0
-1
4

Lecture 3
The Stack

Outline

Generic Stack Operations

I push: push new element on stack

I pop: pop element on stack, return null if no element on
stack

I top/peek: show last element on stack

I can only push to top and pop from top of the stack

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 13/41

Generic Stack Operations

I push: push new element on stack

I pop: pop element on stack, return null if no element on
stack

I top/peek: show last element on stack

I can only push to top and pop from top of the stack

2
0
1
9
-1
0
-1
4

Lecture 3
The Stack

Generic Stack Operations

The Stack in the Process Address Space

I it’s bottom up in x86 architecture

I base address points to bottom of the stack

I stack pointer points to top of the stack

I stack pointer <= base address

I stack size = base address - stack pointer
I stack “grows down”

I when stack grows, stack pointer decreases in value
I when stack decreases, stack pointer increases in value

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 14/41

The Stack in the Process Address Space

I it’s bottom up in x86 architecture

I base address points to bottom of the stack

I stack pointer points to top of the stack

I stack pointer <= base address

I stack size = base address - stack pointer
I stack “grows down”

I when stack grows, stack pointer decreases in value
I when stack decreases, stack pointer increases in value

2
0
1
9
-1
0
-1
4

Lecture 3
The Stack

The Stack in the Process Address Space

Push/Pop

I push operation adds data to stack: stack grows, stack pointer
decreases

I push is equivalent to
I sub $4, %esp
I mov value, (%esp)

I pop operation removes data from stack: stack decreases,
stack pointer increases

I push is equivalent to
I mov (%esp), value
I add $4, %esp

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 15/41

Push/Pop

I push operation adds data to stack: stack grows, stack pointer
decreases

I push is equivalent to
I sub $4, %esp
I mov value, (%esp)

I pop operation removes data from stack: stack decreases,
stack pointer increases

I push is equivalent to
I mov (%esp), value
I add $4, %esp

2
0
1
9
-1
0
-1
4

Lecture 3
The Stack

Push/Pop

Stack Frame

http://ocw.cs.pub.ro/courses/so/laboratoare/laborator-04

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 16/41

Stack Frame

http://ocw.cs.pub.ro/courses/so/laboratoare/laborator-042
0
1
9
-1
0
-1
4

Lecture 3
The Stack

Stack Frame

http://ocw.cs.pub.ro/courses/so/laboratoare/laborator-04
http://ocw.cs.pub.ro/courses/so/laboratoare/laborator-04

Stack Frame (2)

I caller and callee

I stores current function call context

I stores return address

I identified by frame pointer

I What does the -fomit-frame-pointer option do?

I call stack

I stack (back)trace

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 17/41

Stack Frame (2)

I caller and callee

I stores current function call context

I stores return address

I identified by frame pointer

I What does the -fomit-frame-pointer option do?

I call stack

I stack (back)trace

2
0
1
9
-1
0
-1
4

Lecture 3
The Stack

Stack Frame (2)

Call Stack

http://en.wikipedia.org/wiki/Stack_(abstract_data_type)#Hardware_stacks

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 18/41

Call Stack

http://en.wikipedia.org/wiki/Stack_(abstract_data_type)#Hardware_stacks

2
0
1
9
-1
0
-1
4

Lecture 3
The Stack

Call Stack

http://en.wikipedia.org/wiki/Stack_(abstract_data_type)#Hardware_stacks
http://en.wikipedia.org/wiki/Stack_(abstract_data_type)#Hardware_stacks

Calling a Function

I push function arguments, stack pointer decreases, the stack
grows

I issue call new-function-address
I save/push instruction pointer on stack (stack grows, stack

pointer decreases
I jump to new-function-address

I save/push old frame pointer

I save current stack pointer in frame pointer register

I save registers

I make room on stack (stack grows, stack pointer decreases)

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 19/41

Calling a Function

I push function arguments, stack pointer decreases, the stack
grows

I issue call new-function-address
I save/push instruction pointer on stack (stack grows, stack

pointer decreases
I jump to new-function-address

I save/push old frame pointer

I save current stack pointer in frame pointer register

I save registers

I make room on stack (stack grows, stack pointer decreases)2
0
1
9
-1
0
-1
4

Lecture 3
The Stack

Calling a Function

Returning from a Function

I discard stack (stack decreases, stack pointer increases)

I restore/pop registers

I restore/pop old frame pointer
I issue ret

I restore instruction pointer from top of the stack (stack
decreases, stack pointer increases)

I continue execution from previous point

I restore frame pointer

I discard stack in caller frame

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 20/41

Returning from a Function

I discard stack (stack decreases, stack pointer increases)

I restore/pop registers

I restore/pop old frame pointer
I issue ret

I restore instruction pointer from top of the stack (stack
decreases, stack pointer increases)

I continue execution from previous point

I restore frame pointer

I discard stack in caller frame

2
0
1
9
-1
0
-1
4

Lecture 3
The Stack

Returning from a Function

Outline

Runtime Application Security

The Process Address Space

The Stack

Buffer Management

Exploiting the Stack

Conclusion

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 21/41

Outline

Runtime Application Security

The Process Address Space

The Stack

Buffer Management

Exploiting the Stack

Conclusion2
0
1
9
-1
0
-1
4

Lecture 3
Buffer Management

Outline

What is a Buffer?

I an array of bytes for storing temporary data

I generally dynamic (its contents change during runtime)

I frequent access: read-write

I base address, data type, number of elements

I buffer size = number of elements * sizeof(data type)

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 22/41

What is a Buffer?

I an array of bytes for storing temporary data

I generally dynamic (its contents change during runtime)

I frequent access: read-write

I base address, data type, number of elements

I buffer size = number of elements * sizeof(data type)

2
0
1
9
-1
0
-1
4

Lecture 3
Buffer Management

What is a Buffer?

Why Buffers?

I store data during runtime

I pass data between functions (arguments or return values)

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 23/41

Why Buffers?

I store data during runtime

I pass data between functions (arguments or return values)

2
0
1
9
-1
0
-1
4

Lecture 3
Buffer Management

Why Buffers?

On Memory Allocation

I static allocation: at compile time (in data or bss)

I dynamic allocation: at runtime (malloc, on heap)

I automatic allocation: on the stack, during runtime, usually
fixed size

I in case of dynamic allocation, the pointer variable is stored on
the stack and the actual buffer data is stored on the heap

I allocation granularity is the page at OS/hardware-level

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 24/41

On Memory Allocation

I static allocation: at compile time (in data or bss)

I dynamic allocation: at runtime (malloc, on heap)

I automatic allocation: on the stack, during runtime, usually
fixed size

I in case of dynamic allocation, the pointer variable is stored on
the stack and the actual buffer data is stored on the heap

I allocation granularity is the page at OS/hardware-level

2
0
1
9
-1
0
-1
4

Lecture 3
Buffer Management

On Memory Allocation

Arrays vs. Pointers

I int buffer[10]; – array

I int *buffer; – pointer

I array occupies sizeof(buffer)

I pointer occupies sizeof(int *) + size of buffer

I an array is like a label

I a pointer is a variable

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 25/41

Arrays vs. Pointers

I int buffer[10]; – array

I int *buffer; – pointer

I array occupies sizeof(buffer)

I pointer occupies sizeof(int *) + size of buffer

I an array is like a label

I a pointer is a variable

2
0
1
9
-1
0
-1
4

Lecture 3
Buffer Management

Arrays vs. Pointers

Problems with Buffers

I you have to know their length
I buffer overflow

I you have to be careful about the index
I index out of bounds
I buffer overflow
I negative index

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 26/41

Problems with Buffers

I you have to know their length
I buffer overflow

I you have to be careful about the index
I index out of bounds
I buffer overflow
I negative index

2
0
1
9
-1
0
-1
4

Lecture 3
Buffer Management

Problems with Buffers

Buffer Overflow

I write data continuously in buffer (strcpy-like)

I pass buffer boundary and overwrite data

I may be exploited by writing function pointers, return address
or function pointers

I allocations is page level, so overflow won’t trigger exceptions

I may be stack-based or heap-based

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 27/41

Buffer Overflow

I write data continuously in buffer (strcpy-like)

I pass buffer boundary and overwrite data

I may be exploited by writing function pointers, return address
or function pointers

I allocations is page level, so overflow won’t trigger exceptions

I may be stack-based or heap-based

2
0
1
9
-1
0
-1
4

Lecture 3
Buffer Management

Buffer Overflow

Outline

Runtime Application Security

The Process Address Space

The Stack

Buffer Management

Exploiting the Stack

Conclusion

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 28/41

Outline

Runtime Application Security

The Process Address Space

The Stack

Buffer Management

Exploiting the Stack

Conclusion2
0
1
9
-1
0
-1
4

Lecture 3
Exploiting the Stack

Outline

What if?

I not enough arguments for a function call

I too many arguments for a function call

I overflow of local buffers

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 29/41

What if?

I not enough arguments for a function call

I too many arguments for a function call

I overflow of local buffers

2
0
1
9
-1
0
-1
4

Lecture 3
Exploiting the Stack

What if?

The Return Address

I stored on the stack to allow jump back

I may be overwritten and allow random jumps (the stack is
read write)

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 30/41

The Return Address

I stored on the stack to allow jump back

I may be overwritten and allow random jumps (the stack is
read write)

2
0
1
9
-1
0
-1
4

Lecture 3
Exploiting the Stack

The Return Address

Stack Overflow

I the stack overflows, goes into another memory zone

I may be the heap

I may be another stack in case of a multithreaded program

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 31/41

Stack Overflow

I the stack overflows, goes into another memory zone

I may be the heap

I may be another stack in case of a multithreaded program

2
0
1
9
-1
0
-1
4

Lecture 3
Exploiting the Stack

Stack Overflow

Stack Buffer Overflow

I overflow buffer on stack and rewrite something

I rewriting may be a local variable (number, function pointer)
or return address of current stack frame

I if rewriting a function pointer jump to a conveniant address:
address of buffer on stack, address of environment variable,
address of function in libc

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 32/41

Stack Buffer Overflow

I overflow buffer on stack and rewrite something

I rewriting may be a local variable (number, function pointer)
or return address of current stack frame

I if rewriting a function pointer jump to a conveniant address:
address of buffer on stack, address of environment variable,
address of function in libc

2
0
1
9
-1
0
-1
4

Lecture 3
Exploiting the Stack

Stack Buffer Overflow

Rewrite the Return Address with Address on Stack

I the usual way to exploit a stack buffer overflow (needs
non-executable stack)

I do a stack buffer overflow and overwrite the return address
(ebp+4)

I ovewrite with start address of buffer on the stack

I when function returns, jump to start address of buffer

I carefully place instructions to execute desired code at the
beginning of the buffer (also dubbed shellcode)

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 33/41

Rewrite the Return Address with Address on Stack

I the usual way to exploit a stack buffer overflow (needs
non-executable stack)

I do a stack buffer overflow and overwrite the return address
(ebp+4)

I ovewrite with start address of buffer on the stack

I when function returns, jump to start address of buffer

I carefully place instructions to execute desired code at the
beginning of the buffer (also dubbed shellcode)

2
0
1
9
-1
0
-1
4

Lecture 3
Exploiting the Stack

Rewrite the Return Address with Address on
Stack

NOP Sled

I buffer may be placed at non-exact address

I one solution is guessing the address

I the other is placing a sufficient number of NOP operations
and jump to an address in the middle of the NOPs

I the program executes a set of NOPs and then reaches the
actual shellcode

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 34/41

NOP Sled

I buffer may be placed at non-exact address

I one solution is guessing the address

I the other is placing a sufficient number of NOP operations
and jump to an address in the middle of the NOPs

I the program executes a set of NOPs and then reaches the
actual shellcode

2
0
1
9
-1
0
-1
4

Lecture 3
Exploiting the Stack

NOP Sled

Shellcode

I a sequence of instructions allowing the execution of an
instruction similar to system("/bin/sh");

I usually provides a shell out of an average program

I may do some other actions (reading files, writing to files)

I the shell is a first step of an exploitation

I followed by an attempt to gain root access

I more on “Lecture 03: Exploiting”

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 35/41

Shellcode

I a sequence of instructions allowing the execution of an
instruction similar to system("/bin/sh");

I usually provides a shell out of an average program

I may do some other actions (reading files, writing to files)

I the shell is a first step of an exploitation

I followed by an attempt to gain root access

I more on “Lecture 03: Exploiting”

2
0
1
9
-1
0
-1
4

Lecture 3
Exploiting the Stack

Shellcode

Return-to-libc Attack

I jump to a function call in the C library (such as system or
exec)

I may be used in heap or data segments

I useful when stack is non-executable

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 36/41

Return-to-libc Attack

I jump to a function call in the C library (such as system or
exec)

I may be used in heap or data segments

I useful when stack is non-executable

2
0
1
9
-1
0
-1
4

Lecture 3
Exploiting the Stack

Return-to-libc Attack

Demo

I the stack in shellcodes

I level 5 from io.smashthestack.org

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 37/41

Demo

I the stack in shellcodes

I level 5 from io.smashthestack.org

2
0
1
9
-1
0
-1
4

Lecture 3
Exploiting the Stack

Demo

Outline

Runtime Application Security

The Process Address Space

The Stack

Buffer Management

Exploiting the Stack

Conclusion

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 38/41

Outline

Runtime Application Security

The Process Address Space

The Stack

Buffer Management

Exploiting the Stack

Conclusion2
0
1
9
-1
0
-1
4

Lecture 3
Conclusion

Outline

Keywords

I address space

I stack

I push

I pop

I stack frame

I call stack

I stack trace

I call

I ret

I buffer

I allocation

I buffer overflow

I return address

I NOP sled

I shellcode

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 39/41

Keywords

I address space

I stack

I push

I pop

I stack frame

I call stack

I stack trace

I call

I ret

I buffer

I allocation

I buffer overflow

I return address

I NOP sled

I shellcode

2
0
1
9
-1
0
-1
4

Lecture 3
Conclusion

Keywords

Useful Links

I Aleph One – Smashing the Stack for Fun and Profit:
http://insecure.org/stf/smashstack.html

I http://www.cs.umd.edu/class/sum2003/cmsc311/

Notes/Mips/stack.html

I http:

//www.cs.vu.nl/~herbertb/misc/bufferoverflow/

I http://www.win.tue.nl/~aeb/linux/hh/hh-10.html

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 40/41

Useful Links

I Aleph One – Smashing the Stack for Fun and Profit:
http://insecure.org/stf/smashstack.html

I http://www.cs.umd.edu/class/sum2003/cmsc311/

Notes/Mips/stack.html

I http:

//www.cs.vu.nl/~herbertb/misc/bufferoverflow/

I http://www.win.tue.nl/~aeb/linux/hh/hh-10.html

2
0
1
9
-1
0
-1
4

Lecture 3
Conclusion

Useful Links

http://insecure.org/stf/smashstack.html
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/stack.html
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/stack.html
http://www.cs.vu.nl/~herbertb/misc/bufferoverflow/
http://www.cs.vu.nl/~herbertb/misc/bufferoverflow/
http://www.win.tue.nl/~aeb/linux/hh/hh-10.html
http://insecure.org/stf/smashstack.html
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/stack.html
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/stack.html
http://www.cs.vu.nl/~herbertb/misc/bufferoverflow/
http://www.cs.vu.nl/~herbertb/misc/bufferoverflow/
http://www.win.tue.nl/~aeb/linux/hh/hh-10.html

References

I Security Warrior
I Chapter 5. Overflow Attacks

I The Ethical Hacker’s Handbook, 3rd Edition
I Chapter 11: Basic Linux Exploits

I The Art of Exploitation, 2nd Edition
I Section 0x270. Memory Segmentation
I Chapter 0x300. Exploitation

CSE Dep, ACS, UPB Lecture 3, The Stack. Buffer Management 41/41

References

I Security Warrior
I Chapter 5. Overflow Attacks

I The Ethical Hacker’s Handbook, 3rd Edition
I Chapter 11: Basic Linux Exploits

I The Art of Exploitation, 2nd Edition
I Section 0x270. Memory Segmentation
I Chapter 0x300. Exploitation

2
0
1
9
-1
0
-1
4

Lecture 3
Conclusion

References

	Runtime Application Security
	The Process Address Space
	The Stack
	Buffer Management
	Exploiting the Stack
	Conclusion

