
Lecture 2
Program Analysis

Computer and Network Security
October 7, 2019

Computer Science and Engineering Department

CSE Dep, ACS, UPB Lecture 2, Program Analysis 1/79

Program Analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 2/79

Program Analysis

I automatic analysis of programs

I property verification

I optimization (performance) or correctness

I static analysis or dynamic analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 3/79

Program Model

I automaton

I control flow graph (CFG) (set of states and transitions)

I coverage: how much of the CFG can the analysis cover to
ensure property validation

CSE Dep, ACS, UPB Lecture 2, Program Analysis 4/79

Static and Dynamic Analysis

I do not execute or execute the program

I static analysis on source code or on binary program
(executable)

I dynamic analysis on resource usage and behavior (process)

I symbolic execution is static analysis

I fuzzing is dynamic analysis

I static analysis: broad, may go into path explosion

I dynamic analysis: depth, may miss certain cases

CSE Dep, ACS, UPB Lecture 2, Program Analysis 5/79

Source Code vs Executable

I extensive analysis on source code but . . .

I we don’t know what the compiler / linker does to it, what
optimizations happen, how it links to other components

I it may not be available

I we focus most on static binary analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 6/79

Challenges of Static Binary Analysis

I more difficult to understand: requires reverse engineering

I may be subject to obfuscation, encryption, packing

I typically doubled by dynamic analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 7/79

Process as a Goal

I provide functionality

I dynamic / run time

I allocate and use memory and other resources

CSE Dep, ACS, UPB Lecture 2, Program Analysis 9/79

Steps from Source Code to Process

1. compile and assemble source code into object files

2. link object files into executable

3. load executable (disk image file) into process (memory +
CPU)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 10/79

Object File

I binary files

I headers and binary code

I may be disassembled

I data and code

I sections

CSE Dep, ACS, UPB Lecture 2, Program Analysis 11/79

Library Files

I archive/collection of object files

I modularity
I static-linking and dynamic linking libraries

I linking happens at link time
I linking happens at load time

CSE Dep, ACS, UPB Lecture 2, Program Analysis 12/79

Executable Files

I binary files

I similar to object files, consist of object code

I may be disassembled

I created from object files
I static and dynamic executables

I static: all object code is part of the executable
I dynamic: library stubs to library functions

CSE Dep, ACS, UPB Lecture 2, Program Analysis 13/79

ELF

http://www.roman10.net/2012/11/28/an-intro-to-elf-file-formatpart-1-file-types-and-dual-views/

CSE Dep, ACS, UPB Lecture 2, Program Analysis 14/79

http://www.roman10.net/2012/11/28/an-intro-to-elf-file-formatpart-1-file-types-and-dual-views/

Object File Format

I format of a file that contains object code: object file,
executable files, dynamic-linking library files

I headers, sections

I data and code

I may be disassembled

I PE (Portable Executable) on Windows

I COFF (Common Object File Format) on Unix

I ELF (Executable and Linking Format) on Linux

CSE Dep, ACS, UPB Lecture 2, Program Analysis 16/79

Common Information in Executabile Files

I entry point

I program addresses (section addresses)

I section sizes

I symbols (names and addresses)

I permissions

CSE Dep, ACS, UPB Lecture 2, Program Analysis 17/79

ELF Format

I header

I program headers

I sections

I segments

I symbols

I readelf, objdump, nm

CSE Dep, ACS, UPB Lecture 2, Program Analysis 18/79

Sections

I storing data or code

I readelf -S program

I .text, .data, .bss

I .symtab, .strtab

CSE Dep, ACS, UPB Lecture 2, Program Analysis 19/79

Sections vs. Segments

I segments contain 0 ore more sections

I sections are used by linker, some sections may be ditched at
runtime

I segments are used by the operating system (loaded into
memory)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 20/79

View of ELF File

http://www.roman10.net/2012/11/28/an-intro-to-elf-file-formatpart-1-file-types-and-dual-views/

CSE Dep, ACS, UPB Lecture 2, Program Analysis 21/79

http://www.roman10.net/2012/11/28/an-intro-to-elf-file-formatpart-1-file-types-and-dual-views/

Symbols

I readelf -s program

I .dynsym and .symtab

I name, value, type, bind, size

CSE Dep, ACS, UPB Lecture 2, Program Analysis 22/79

Debugging Symbols

I Map Assembly instructions to variable, function or line in the
source code

I Help mapping stack values with function parameters

I Optimize data flow analysis

I Optimize static and dynamic analysis

I On Linux, symbol table is embedded in the ELF file. PE files
use an external symbols file

CSE Dep, ACS, UPB Lecture 2, Program Analysis 23/79

Stripping

I Removing symbol table from program executable

I Complicates reverse engineering

I Less space used by original binary

CSE Dep, ACS, UPB Lecture 2, Program Analysis 24/79

Overview of Linking

I All object files are linked together to produce an executable file

I Input: Object files, static libraries, dynamic libraries

I Output: Executable image

I The linker resolved external references from each object file

CSE Dep, ACS, UPB Lecture 2, Program Analysis 26/79

Using ld

I Command used in the last compiling phase

I Libraries are specified using -l option

I PIE option enables ASLR support

CSE Dep, ACS, UPB Lecture 2, Program Analysis 27/79

Static Linking

I Linker copies library routines directly into executables image

I Executable is more portable because all data needed to
execute resides in the file

I Faster execution because imports are not resolved at runtime

I Uses more space

CSE Dep, ACS, UPB Lecture 2, Program Analysis 28/79

Tools of Trade

I building machine code files

I inspecting machine code files

I disassembling machine code files

CSE Dep, ACS, UPB Lecture 2, Program Analysis 30/79

Building Executables

I gcc, gas, nasm, ar, ld

CSE Dep, ACS, UPB Lecture 2, Program Analysis 31/79

ELF Inspection

I strings

I xxd

I readelf

I nm

CSE Dep, ACS, UPB Lecture 2, Program Analysis 32/79

Disassembling

I IDA

I objdump

I radare2

CSE Dep, ACS, UPB Lecture 2, Program Analysis 33/79

Not for Static Analysis

I pmap

I lsof

I ltrace

I strace

I GDB

CSE Dep, ACS, UPB Lecture 2, Program Analysis 34/79

Dynamic Analysis

I starts from executable files

I investigate processes

I requires process to run

I runtime analysis

I blackbox analysis

CSE Dep, ACS, UPB Lecture 2, Program Analysis 36/79

Processes

I unit of work in the operating system

I virtual memory address space, threads, resources

I isolated from each other

I at load time the executable gives birth to a process

CSE Dep, ACS, UPB Lecture 2, Program Analysis 37/79

Process Memory Layout

http://www.tenouk.com/Bufferoverflowc/Bufferoverflow1_files/image022.png

CSE Dep, ACS, UPB Lecture 2, Program Analysis 38/79

http://www.tenouk.com/Bufferoverflowc/Bufferoverflow1_files/image022.png

Interesting Process Information

I the process memory map (virtual memory areas)

I memory addresses: code, variables

I memory region access rights

I machine code (to be disassembled)

I process state: registers, (call) stack, code

CSE Dep, ACS, UPB Lecture 2, Program Analysis 39/79

Why Dynamic Analysis

I get output for input (blackbox)

I glimpse into the internals

I monitor/inspect resource usage

I debug execution and test attacks (step by step)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 40/79

What Do We Investigate?

I code: system calls, library calls, function calls, step-by-step
code

I state: thread information, process maps, open files, resources

I data: registers, variables, raw memory data

CSE Dep, ACS, UPB Lecture 2, Program Analysis 41/79

Inspecting Code

I function call tracing

I disassembling

I step by step instructions

I look into code where required in the process virtual address
space

CSE Dep, ACS, UPB Lecture 2, Program Analysis 42/79

Inspecting Data

I variables: global (data) and local (stack)

I runtime metadata: return addresses, function arguments,
command line arguments, GOT and PLT (to be discussed
later)

I registers

I raw memory data: heap, stack, random address

CSE Dep, ACS, UPB Lecture 2, Program Analysis 43/79

Inspecting State

I process memory map

I thread state

I open file descriptors

CSE Dep, ACS, UPB Lecture 2, Program Analysis 44/79

Types of Tools

I blackbox inspection: function call tracers (strace, ltrace,
dtrace/dtruss), fuzzers

I profilers: most often for performance: perf, callgrind, vTune

I debugging: GDB, LLDB, valgrind

CSE Dep, ACS, UPB Lecture 2, Program Analysis 46/79

Fuzzing

I generate “random” input and detect program flaws

I program is run

I smart fuzzer try to direct

I AFL, libfuzzer

CSE Dep, ACS, UPB Lecture 2, Program Analysis 47/79

strace/ltrace

I strace ./a.out

I strace -e read,write ./a.out

I strace -e file ./a.out

I strace -e file -f ./a.out

I strace -e file -s 512 -f ./a.out

I similar options for ltrace

CSE Dep, ACS, UPB Lecture 2, Program Analysis 48/79

lsof/pmap

I PID as argument

I lsof -p 12345

I pmap 12345

CSE Dep, ACS, UPB Lecture 2, Program Analysis 49/79

perf

I default profiler on Linux

I sampling profiler, doesn’t instrument the code

I uses events sampling

I perf stat -e cache-misses -a ./mem-walk

I sudo perf list

I some actions and events may require privileged access

CSE Dep, ACS, UPB Lecture 2, Program Analysis 50/79

GDB

I default debugger on GNU/Linux distributions

I command line; there are some GUI front-ends

I incorporated in Linux-based IDEs

I debugging, dynamic analysis / process investigation

I gdb ./a.out

I gdb -q ./a.out

CSE Dep, ACS, UPB Lecture 2, Program Analysis 51/79

LLDB

I LLVM Debugger

I used on Mac OS X

I similar features to GDB

I command line; most commands are equivalent to GDB

I http://lldb.llvm.org/lldb-gdb.html

CSE Dep, ACS, UPB Lecture 2, Program Analysis 52/79

http://lldb.llvm.org/lldb-gdb.html

Hardware Support for Debugging

I useful for debugging embedded devices
I JTAG: Joint Test Action Group

I uses dedicated debug port

I Lauterbach Trace32: in circuit debugger (device using JTAG)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 53/79

GDB and Security

I not just for debugging

I follow what a process does (step instructions)

I inspect data (memory, registers)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 55/79

GDB for Dynamic Analysis

I process state inspection

I register inspection

I (machine) code inspection

I memory inspection

I memory alteration

I function call tracing

CSE Dep, ACS, UPB Lecture 2, Program Analysis 56/79

GDB Basics

I starting a process

I stepping instructions

I breakpoints

I disassemble

I show registers

I display data

I trace function calls

I alter data

CSE Dep, ACS, UPB Lecture 2, Program Analysis 57/79

Starting a Process

I run

I run < input file

I run arg1 arg2 arg3

I set args arg1 arg2 arg3 and then issue run

I start: breakpoint at main / starting point

CSE Dep, ACS, UPB Lecture 2, Program Analysis 58/79

Stepping Instructions

I si and ni

I ni doesn’t go into nested functions

I very useful for understanding programs and validating attacks

CSE Dep, ACS, UPB Lecture 2, Program Analysis 59/79

Breakpoints

I b symbol-name

I b *address: b *0x80123456

I continue: continue until the next breakpoint

I help breakpoints

CSE Dep, ACS, UPB Lecture 2, Program Analysis 60/79

Disassembling

I during runtime

I disass symbol-name: disass printf

I help disassemble

CSE Dep, ACS, UPB Lecture 2, Program Analysis 61/79

Displaying Data

I show memory data or registers

I info registers

I p $eax

I p *0x80123456

I x/10x 0x12345678: examine memory and display in hex

I x/10s 0x12345678: examine memory and display in string

I x/10i 0x12345678: examine memory and display in
instructions

I help p

I help x

CSE Dep, ACS, UPB Lecture 2, Program Analysis 62/79

Find Data in Memory

I find "sh"

I find 0x01020304

I find 0x400000, 100000, "sh"

CSE Dep, ACS, UPB Lecture 2, Program Analysis 63/79

Trace Function Calls

I backtrace: show function trace

I up, down: update current call stack

I http://web.mit.edu/gnu/doc/html/gdb_8.html

CSE Dep, ACS, UPB Lecture 2, Program Analysis 64/79

http://web.mit.edu/gnu/doc/html/gdb_8.html

Alter Data

I set variable num = 10

I set {int}0x8038290 = 10

I set $eax = 0x12345678

CSE Dep, ACS, UPB Lecture 2, Program Analysis 65/79

PEDA

I Python Exploit Development Assistance

I enhancement for GDB

I create cyclic patterns

I Return Oriented Programming features

I custom view: code, registers, stack

I shellcode features

I telescope an address (follow pointers)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 66/79

Times in Getting from Source Code to Process

I compile time: when translating source code to object code in
object files (using gcc, gas, nasm)

I link time: when aggregating multiple object files into an
executable file (using gcc, ld)

I load time: when executable is loaded in memory and a process
is created (using ./program)

I run time: while the process is running (using strace -p, lsof -p)

CSE Dep, ACS, UPB Lecture 2, Program Analysis 68/79

Linking and Loading

I linking is getting object files together into an executable or
dynamic-linking file

I for the linker, object files are input and executables are output

I loading is getting an executable into memory and starting a
process

I for the loader, executable file is input, process is output

CSE Dep, ACS, UPB Lecture 2, Program Analysis 69/79

Static linking

I all symols are solved at link time

I all code is part of the executable

I static executables

I large executable files, but with no dependencies, highly
portable

CSE Dep, ACS, UPB Lecture 2, Program Analysis 70/79

Load Time Dynamic Linking

I symbols are marked as stubs inside the executable file

I symbols are solved at load time, the moment the process is
created

I symbols are picked from dynamic-linking library files

I provides reduced size executable files but requires
dependencies to be satisfied

CSE Dep, ACS, UPB Lecture 2, Program Analysis 71/79

Run Time Dynamic Linking

I linking (and loading) is done at runtime

I it may be implicit (lazy binding) or explicit

I dlopen, dlsym for the explicit case: explicitly load a library and
locate a symbol

CSE Dep, ACS, UPB Lecture 2, Program Analysis 72/79

Lazy Binding

I postpone linking of a symbol until it is called

I usually done for functions through the use of a trampoline
section (PLT for ELF)

I the first time a function is called, the dynamic linker also does
the binding

CSE Dep, ACS, UPB Lecture 2, Program Analysis 73/79

Locating Libraries

I for stating linking, use the -L argument to gcc

I for dynamic linking, the dynamic linker/loader is used:
ld-linux.so

I man ld-linux.so

I searches for

1. values in LD_LIBRARY_PATH

2. the /etc/ld.so.cache file; populated by ldconfig

3. the default /lib and /usr/lib library folders

CSE Dep, ACS, UPB Lecture 2, Program Analysis 74/79

PLT

I used for external library function calls

I generic trampoline code to jump to initially jump to
per-function binder (.plt in ELF)

I writable data area storing function pointers (.got.plt)
I initially store pointers to binder code (symbol solver)
I after the first call store actual pointer to function call

CSE Dep, ACS, UPB Lecture 2, Program Analysis 75/79

GOT

I Global Offset Table

I .got in ELF for global variables

I .got.plt in ELF for external library function pointers

I local uses of external library symbol point to GOT

I GOT if filled by the dynamic linker at the beginning

CSE Dep, ACS, UPB Lecture 2, Program Analysis 76/79

Keywords

I static analysis

I dynamic analysis

I executable

I ELF

I readelf

I section

I segment

I disassembling

I objdump

I symbols

I linker

I process

I strace / ltrace

I lsof / pmap

I perf

I GDB

I breakpoint

I info

I examine

I ni, si

I backtrace, up, down

I write

I searchmem

I dynamic linking

I dynamic loading

I lazy binding

I trampoline

I PLT

I GOT

CSE Dep, ACS, UPB Lecture 2, Program Analysis 78/79

Useful Links

I http://www.skyfree.org/linux/references/ELF_Format.pdf

I ftp://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html

I https://msdn.microsoft.com/en-us/library/windows/desktop/

ee416588(v=vs.85).aspx

I https://www.technovelty.org/linux/

plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html

CSE Dep, ACS, UPB Lecture 2, Program Analysis 79/79

http://www.skyfree.org/linux/references/ELF_Format.pdf
ftp://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_node/ld_3.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588(v=vs.85).aspx
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html

	From Source Code to Process
	The ELF Format
	Linking
	Tools of the Trade for Binary Static Analysis
	Dynamic Analysis
	Tools for Dynamic Analysis
	GDB
	Dynamic Linking and Loading
	Conclusion

